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ABSTRACT

Machine learning (ML)-based techniques for electronic design automa-

tion (EDA) have boosted the performance of modern integrated circuits

(ICs). Such achievement makes ML model to be of importance for the

EDA industry. In addition, ML models for EDA are widely considered

having high development cost because of the time-consuming and

complicated training data generation process. Thus, confidentiality

protection for EDA models is a critical issue. However, an adversary

could apply model extraction attacks to steal the model in the sense

of achieving the comparable performance to the victim’s model. As

model extraction attacks have posed great threats to other application

domains, e.g., computer vision and natural language process, in this

paper, we study model extraction attacks for EDA models under two

real-world scenarios. It is the first work that (1) introduces model ex-

traction attacks on EDA models and (2) proposes two attack methods

against the unlimited and limited query budget scenarios. Our results

show that our approach can achieve competitive performance with

the well-trained victim model without any performance degradation.

Based on the results, we demonstrate that model extraction attacks

truly threaten the EDAmodel privacy and hope to raise concerns about

ML security issues in EDA.

1 INTRODUCTION

Modern IC design development involves a multi-stage design flow.

However, with limited interplay across different stages, tools in the

early stage cannot guarantee high-quality solutions for subsequent

stages, causing the need of many optimization iterations. As technology

node shrinks, this drawback leads to an even longer turnaround time

in IC design development. Thus, new EDA methodologies for design

efficiency improvement is in a high demand.

ML techniques, which have shown great ability in prediction and

optimization, play important roles in the advanced EDA tool devel-

opment. A wide range of ML-based approaches [11] is proposed to

foresee circuit quality across different stages, such as routability pre-

diction [7, 8, 17, 28, 31] and lithographic hotspot detection [18, 30]. In

addition, many industrial tools [5, 25] have demonstrated great poten-

tial in integrating ML models into EDA design flows to achieve better

IC power, performance, and area (PPA). The achievement exhibits the

power of ML techniques, leading to the high demand of ML for EDA.

With the fast development of ML for EDA techniques, the next im-

portant phase for their wide adoption is about the commercialization.

An essential question to consider is, what will be the possible business

scenarios of ML for EDA? We envision two possibilities based on our

understanding. First, some giant semiconductor companies may be able

to develop and use ML models all by themselves. However, this sce-

nario is hard to be supported by small or even middle-class companies

because its development requires expertise with a diverse background,
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Figure 1: An anticipated application scenario of ML for EDA

model and the corresponding model extraction attack. The ven-

dor trains a model with circuit features and labels generated by

EDA tools. Users are expected to take their own circuit features

as inputs to query their circuits’ quality. However, malicious

users can take advantage of model outputs to construct similar

substitute models, without the costly label generation process.

including ML, EDA, and IC design. Thus, a more ‘democratic’ sce-

nario that may benefit more IC designers could be separate ML model

vendors and users. This specialization would be more convenient for

those vendors/users to focus on developing/applying ML models for

EDA. We believe this scenario is practicable since it is also observed

in other domain applications. For example, Microsoft Azure [19] pro-

vides natural language processing models through web Application

Programming Interfaces (APIs) in a secure cloud platform to support

queries from users. In this way, they can choose not to disclose its

model to users and thus protect their model, which has great business

value. Similarly, we expect ML models for EDA can also be provided

as a service through APIs, and we focus on such separate-vendor-user

scenario in this paper.

The details of this envisioned scenario is depicted in Figure 1. The

vendor first trains its ML model using circuit features and labels pro-

duced by EDA tools. Such ML model could be mostly used to per-

form quality prediction (e.g., power, timing, and routability). This well-

trained model, which is also referred to as an oracle, is then accessed by

users as a black box. Therefore, by feeding the circuit features into the

oracle, normal users can obtain the quality prediction results and then

use results to facilitate circuit development in the subsequent stages.

However, in this scenario, the business value of the vendor’s model

is under risk because the model could be replicated by malicious users

with model extraction attacks [13, 15, 20]. In such attacks, malicious

users aim to steal or replicate the remotely deployed model with the

goal of achieving the competitive performance. In the scenario sketched

in Figure 1, malicious users can easily build their own substitute models

by exploiting the vendor-provided oracle. They can obtain abundant

pseudo labels in a short period and train models without the label

generation process with EDA tools. In ML for EDA, label generation is

a burdensome task. As the example in Table 1 shows, obtaining only one

post-routing label for a moderate-size design (with 100k nets) requires

approximately 2 hours by running the commercial tool. Therefore,

constructing a dataset with thousands of data points would take up

to several months for the vendors. In comparison, obtaining a label

through an existing ML model only takes 0.03 seconds. Thus, malicious

users can save lots of model development time by utilizing the oracle.

As a result, such model extraction attacks will greatly hurt vendor’s

https://doi.org/10.1145/3566097.3567896


Table 1: Post-routing label generation time. To generate labels

for the ITC’99 [9] benchmark circuit b_19 with 100k nets, com-

mercial EDA tool requires approximately 2.22 hours while the

well-known ML model [28] takes 0.03 seconds.

Label generation method Runtime

Routing with EDA tool (Innovus
®
[6]) 2.22 hr

ML model [28] 0.03 sec

business advantage. This undesirable consequence may hamper the

development and commercialization of ML techniques for EDA.

To validate the attack concern, we investigate model extraction tech-

niques in ML for EDA. In other domain applications, there has been

some previous explorations [13, 15, 20]. However, they cannot be di-

rectly applied in EDA tasks. For example, a well-known work [20] tries

to extract a class-specific classifier from a multi-class model. However,

its goal is different to ours because our attacks aim to extract the exact

same model as the oracle. Second, the work [13] utilizes the rotation

loss to robustify pseudo-label training, while the rotation loss is not

applicable for most tasks on circuit layouts because features and labels

could be mismatched after rotation. Finally, the other work [15] attacks

models that input word sequence, while such word sequence is largely

different from the data format of circuits. Given the uniqueness of EDA

problems, we need to study new methods for model extraction attacks.

To the best of our knowledge, we are the first to study the poten-

tial threat of model extraction attack in EDA. To study its threat, we

construct real-world scenarios targeting routability prediction [7, 8, 17,

28, 31], which is a well-studied ML application for EDA. In this case

study, the attacker’s goal is to construct a new routability model that

can achieve competitive performance with the vendor’s one. Given no

ground-truth labels to the attacker, a naive model extraction attack is to

use pseudo labels from the oracle to train a model. However, the attack

model’s performance cannot be guaranteed because the oracle may

produce false labels due to the model imperfection with unseen data,

which could actually mislead the attack model. Also, the attacker could

have limited query budgets since model vendors may charge users per

query or set a hard limit to prevent potential extraction attacks. In this

work, we propose two more effective model extraction methods by

selecting reliable and high-informative pseudo labels to validate the

threat of model extraction attacks.

Our contributions are summarized as follows:

• We raise the concern of model extraction attacks in ML for EDA

and validate that such attacks truly jeopardize the development

and the commercialization of ML models for EDA through our

results. In this study, we employ a realistic attack setup that

the attacker has no prior knowledge about the vendor’s model

structure and ground-truth labels.

• To examine the threat of model extraction attacks in EDA, we

propose two effective attack methods. Without query budgets,

we propose a confidence-based data selection method to avoid

attacker model being misguided by the unreliability pseudo

labels. With limited query budgets, we propose an information-

based iterative data selection method to progressively choose

the most informative pseudo labels to the attacker model and

apply self-training to improve the model generalization ability.

• Without query budgets, our method can reach competitive per-

formance to the oracle without any performance degradation

and outperform a naive attack method with 5.0% ROC-AUC im-

provement. With limited query budgets, our method can outper-

form simple random selection with average 3.4% improvement

under varied query budget.

Through this article, we explore the risks of model commercialization

imposed by model extraction attacks and call attentions to more ML

security issues [29] for EDA in future studies.

The reminder of the paper is organized as follows. Section 2 details

the preliminaries, including our target application and two EDA model

extraction scenarios. For each scenario, we propose a data selection

method to optimize the attack performance. For the first scenario,

Section 3 introduces the confidence-based data selection method. For

the second scenario, Section 4 gives the information-based iterative

data selection method. Then, Section 5 demonstrates the experimental

results, and Section 6 concludes our paper.

2 PRELIMINARIES

In this section, we first describe our target EDA application, the routabil-

ity prediction. Then, we define real-world model extraction scenarios

for EDA.

2.1 Target application: Routability prediction

As a proof of concept demonstration, we apply model extraction at-

tacks on the routability prediction application [7, 8, 17, 28, 31, 32].

This ML-based estimation is widely applied to improve placers [12]

and routers [8], making great contribution to the physical design flow.

Therefore, we select it as our target application. Routability prediction

estimates the routability of a placement result based on the routing

congestion occurred in global routing. Possessing the routability pre-

diction model, we can examine whether the current placement result

can lead to the congestion-free routing solution in the later routing

stage. Routability prediction can be formally defined as follows: Given a

set of placement solutions with the features 𝑋 , a routability prediction

model 𝑓 takes 𝑋 as inputs to predict routing congestion 𝑌 , where

𝑓 : 𝑋𝑖 ∈ R𝑤×ℎ×𝑐 → 𝑌𝑖 ∈ B𝑤×ℎ .

In this equation, 𝑤 and ℎ are the width and height of the placement

result, 𝑐 is the number of features, andB indicates whether this location
has congestion.

2.2 Model Extraction Scenarios

In this section, we detail two representative scenarios for EDA model

extraction attacks and define the corresponding problem formulations.

In the scenario, there are an ML model vendor and a malicious

user (attacker). The well-trained model 𝑓𝑣 provided by the vendor is

referred to as the victim model and can be queried by users as an oracle

to provide prediction results. As a model buyer, the attacker has a set of

circuits 𝐶 , which generates multiple unlabeled layouts and transforms

into features 𝑋𝑖 to be predicted, and we refer this set of features for the

circuit 𝑐 as U𝑐 = {𝑋𝑖 |𝑋𝑖 ∈ 𝑐}. The whole unlabeled dataset is referred

to as U = {𝑋𝑖 }𝑢𝑖=1 = {⋃ |𝐶 |
𝑐=1

𝑈𝑐 }. The attacker’s objective is to construct
a model 𝑓𝑎 , which is referred to as the attacker model, to achieve the
competitive or even better performance to 𝑓𝑣 . Based on this scenario,

the problem formulation for the model extraction attack can be defined

as follows:

Problem 1 (Application scenario 1). Given a well-trained black-
box victim model 𝑓𝑣 and an attacker’s unlabeled dataset U, the objective
is to build an attacker model 𝑓𝑎 such that the performance of 𝑓𝑎 evaluated
on U is maximized.

In this paper, we further consider the scenario that the attacker has

a query budget. For example, model vendors may deploy ML models

as web APIs to charge users per query. Thus, users could only have

limited queries due to finite budgets. This scenario can be formulated

as follows:

Problem 2 (Application scenario 2). Given a well-trained black-
box victim model 𝑓𝑣 , an attacker’s unlabeled dataset U, and a query
budget 𝛽 , the objective is to build an attacker model 𝑓𝑎 such that the
performance of 𝑓𝑎 evaluated on U is maximized.



Algorithm 1 Confidence-based data selection

Input: Victim model 𝑓𝑣 , unlabeled dataset U
Output: Attacker model 𝑓𝑎 with weights𝑤𝑎

1: P = {(𝑋, 𝑓𝑣 (𝑋 )) |𝑋 ∈ U}
2: 𝑤𝑎 = train(𝑓𝑎, P)
3: mc_array = ∅
4: for 𝑋𝑖 ∈ U do

5: MC𝑖 = MC(𝑋𝑖 ,𝑤𝑎) ⊲ Eq. 1

6: mc_array.add(MC𝑖 )
7: sort mc_array by non-decreasing order

8: U𝛼 = {𝑋𝑖 |MC𝑖 ∈ mc_array[: 𝛼]}
9: P𝛼 = {(𝑋, 𝑓𝑣 (𝑋 )) |𝑋 ∈ U𝛼 }
10: 𝑤𝑎 = train(𝑓𝑎, P𝛼 )
11: return 𝑓𝑎 (·|𝑤𝑎)

3 CONFIDENCE-BASED DATA SELECTION

With unlimited query budgets (Problem 1) to the victim model and the

lack of ground-truth labels, a naive solution is to generate pseudo labels

through the victim model. However, the victim model may produce

false labels due to the model imperfection with unseen data. If the

attacker directly trains its model on the data along with pseudo labels,

the model may be misguided by the incorrect labels, leading to poor

performance. Thus, choosing reliable pseudo labels is essential. To ad-

dress this issue, we propose a confidence-based data selection method

established on the observation that the high-confidence prediction

results is more reliable [27]. However, we cannot calculate the pseudo

label confidence through the victim model because the confidence mea-

surement requires predicted probability [21, 22, 27] whereas the victim

model only provides class prediction. In addition, the most promis-

ing metric to evaluate confidence is Monte-Carlo (MC) dropout [10].

The MC dropout calculation is to apply dropout several times during

the model inference and compute the variance of the predicted prob-

abilities. The variance can be used to presents the sensitivity of the

predicted probability to the weight perturbation. The low sensitivity

indicates the model has high confidence to this data, which in other

words, low MC dropout value represents the high confidence. As we

can not perform dropout on the victim model, we apply a surrogate

model for high-confidence data selection instead.

Our confidence-based data selection method is sketched in Algo-

rithm 1. Given the unlabeled dataset U = {𝑋𝑖 }𝑢𝑖=1, we first use the vic-
tim model 𝑓𝑣 as a labeling oracle to generate pseudo labels 𝑌𝑖 = 𝑓𝑣 (𝑋𝑖 )
and construct a pseudo-label dataset P = {(𝑋𝑖 , 𝑌𝑖 )}𝑢𝑖=1 (Line 1). Then,
we build a surrogate model 𝑓𝑎 (·|𝑤𝑎) by training 𝑓𝑎 on P (Line 2) and
estimate the pseudo label confidence by the surrogate model (Line 4–6).

The MC dropout calculation is detailed as follows. Without loss of

generality, we assume 𝑌𝑖 is a two-dimensional binary classification

prediction, where 𝑌𝑖 ∈ B𝑤×ℎ
and 𝑦 𝑗,𝑘 is an element of 𝑌𝑖 . Given the

model 𝑓𝑎 (·|𝑤𝑎), the MC dropout MC𝑖 of 𝑋𝑖 is calculated by

MC𝑖 = MC(𝑋𝑖 ,𝑤𝑎)

=
1

𝑤 ∗ ℎ

𝑤∑︁
𝑗=1

ℎ∑︁
𝑘=1

var ({prob(𝑦 𝑗,𝑘 = 1|𝑋𝑖 ; �̂�𝑡
𝑎)}𝑇𝑡=1), (1)

where �̂�𝑡
𝑎 are the dropout weights in time 𝑡 , prob(𝑦 𝑗,𝑘 = 1|𝑋𝑖 ; �̂�𝑡

𝑎) is
the probability of 𝑦 𝑗,𝑘 being the positive class predicted by the dropout

network, and var computes the variance of 𝑇 times predicted probabil-

ities. Then, the average over all computed variance is MC𝑖 of 𝑋𝑖 . This

formula can be easily extended to a multi-class classification problem

with an arbitrary prediction dimension by averaging the variance of

each class probability.

After computing MC dropout for all data, we sort MC𝑖 in a non-

decreasing order (Line 7) and pick the first 𝛼 𝑋𝑖 to construct U𝛼 such

that U𝛼 consists of the top-𝛼 high-confidence data, where 𝛼 is an
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Figure 2: Overview of our information-based iterative data selec-

tion method. The attacker iteratively queries the victim model

by high-informative unlabeled data according to the current

attacker model. After meeting the query budget, the attacker

use the current model to label the rest data and train the final

model with the whole pseudo-label dataset.

user-defined parameter. Then, we train the attacker model 𝑓𝑎 on the

pseudo-label dataset P𝛼 = {(𝑋, 𝑓𝑣 (𝑋 )) |𝑋 ∈ U𝛼 } (Line 9–10). In the

sequel, the training operation is referred to training the target model

from scratch. Finally, the attacker model 𝑓𝑎 with weights𝑤𝑎 is returned

(Line 11). With this confidence-based data selection method, we can

train the attacker model with reliable data and thus boost the model

performance.

4 INFORMATION-BASED ITERATIVE DATA

SELECTION

With limited queries to the victim model (Problem 2), our confidence-

based data selection method is not applicable because we cannot ob-

tain all pseudo labels to construct a surrogate model to select high-

confidence data. Under the queries constraint, a straightforward way

to construct dataset is to randomly select limited data to obtain pseudo

labels. However, the random data selection cannot ensure the chosen

data is able to produce a great training result. Due to the restricted

amount of pseudo labels, selecting data that can most benefit the model

is essential to optimize the attacker model performance. Choosing

high-informative data in training [21, 22, 27] has shown great poten-

tial in improving the model performance. As a result, we propose an

information-based iterative data selection method to progressively

select data that could give the most training enhancement to the at-

tacker model. Because the benefit brought by a pseudo label depends

on the current model, we iteratively choose the highest-informative

data based on the current attacker model.

The overview of the information-based iterative data selectionmethod

is sketched in Figure 2. This method includes two main stages: 1) itera-

tive data selection, and 2) self-training method. Iterative data selection

progressively selects high-informative data corresponding to the model

in current iteration until meeting the query budget. Then, self-training

method utilizes the rest unlabeled data to further improve the model

generalization performance. The detailed processes of these stages are

shown in Algorithm 2. First, we define 𝛼 = 𝛽/maxr to be the number

of data to be selected in each iteration, where maxr is an user-defined

parameter representing the iteration number (Line 1), and 𝑟 = 𝛼/|U| to
be the ratio of selected data to the total data in the unlabeled dataset

U (Line 2). Because data derived from different circuit designs tends to

have distinct characteristics (e.g., cell interconnections), the training

dataset should include data from different circuits. Therefore, to con-

struct the initial training set U𝛽 , we sample 𝑟 portions of data from

each U𝑐 , where U𝑐 is the set of data derived from the same circuit 𝑐



Algorithm 2 Information-based iterative data selection

Input: Victim model 𝑓𝑣 , unlabeled dataset U, query budget 𝛽

Output: Attacker model 𝑓𝑎 with weights𝑤𝑎

1: 𝛼 = 𝛽/maxr
2: 𝑟 = 𝛼/|U|
3: U𝛽 = ∅
4: for U𝑐 ∈ U do

5: U0 = random_select(U𝑐 , 𝑟 )
6: U𝛽 = U𝛽 ∪ U0
7: P𝛽 = {(𝑋, 𝑓𝑣 (𝑋 )) |𝑋 ∈ U𝛽 }
8: 𝑤𝑎 = train(𝑓𝑎, P𝛽 )
9: for iter ∈ 2 · · ·maxr do
10: U𝛽′ = U \ U𝛽
11: en_array = ∅
12: for 𝑋𝑖 ∈ U𝛽′ do
13: EN 𝑖 = EN(𝑋𝑖 ,𝑤𝑎). ⊲ Eq. 2

14: en_array.add(EN 𝑖 )
15: sort en_array by non-increasing order

16: U𝛽 = U𝛽 ∪ {𝑋𝑖 |EN 𝑖 ∈ en_array[: 𝛼]}
17: P𝛽 = {(𝑋, 𝑓𝑣 (𝑋 )) |𝑋 ∈ U𝛽 }
18: 𝑤𝑎 = train(𝑓𝑎, P𝛽 )
19: U𝛽′ = U \ U𝛽
20: P𝛽′ = {(𝑋, 𝑓𝑎 (𝑋 |𝑤𝑎)) |𝑋 ∈ U𝛽′}
21: P = P𝛽 ∪ P𝛽′
22: 𝑤𝑎 = train(𝑓𝑎, P)
23: return 𝑓𝑎 (·|𝑤𝑎)

(Lines 4–6). Then, we query the victim model 𝑓𝑣 to generate the initial

pseudo label dataset P𝛽 = {(𝑋, 𝑓𝑣 (𝑋 )) |𝑋 ∈ U𝛽 } and train 𝑓𝑎 on P𝛽
(Lines 7–8).

With the rudimentary attacker model, we enter the loop of iter-

ative data selection (Line 9-18). In each iteration, for all data in the

unqueried dataset U𝛽′ = U \ U𝛽 , we estimate its amount of informa-

tion by entropy [23] based on the prediction of the current attacker

model (Line 11–14). Prediction with high entropy exhibits the model

uncertainty to this prediction. That is, the model lacks the knowledge

of the data, indicating labeling this data can potentially provide more

information to the model.

The entropy can be calculated as follows. Without loss of generality,

we assume 𝑌𝑖 ∈ B𝑤×ℎ
and 𝑦 𝑗,𝑘 is an element of 𝑌𝑖 . Given the model

𝑓𝑎 (·|𝑤𝑎), the entropy EN 𝑖 of 𝑋𝑖 is:

EN 𝑖 = EN(𝑋𝑖 ,𝑤𝑎)

=
1

𝑤 ∗ ℎ

𝑤∑︁
𝑗=1

ℎ∑︁
𝑘=1

𝐻𝑏 (prob(𝑦 𝑗,𝑘 = 1|𝑤𝑎)), (2)

where𝐻𝑏 (𝑝) = −𝑝 log(𝑝)−(1−𝑝) log(1−𝑝), and prob(𝑦 𝑗,𝑘 = 1|𝑋𝑖 ;𝑤𝑎)
is the probability of𝑦 𝑗,𝑘 being t the positive class. Then, EN 𝑖 of𝑋𝑖 is the

average over all computed 𝐻𝑏 . Similar to the MC dropout calculation,

this formula can be extended to multi-class classification problems

with an arbitrary prediction dimension.

After computing entropy, we sort EN 𝑖 in a non-increasing order

and add top-𝛼 high-informative data 𝑋𝑖 into U𝛽 (Line 15–16). Then,

we train the attacker model 𝑓𝑎 on the current pseudo-label dataset

P𝛽 = {(𝑋, 𝑓𝑣 (𝑋 )) |𝑋 ∈ U𝛽 } (Line 17–18). This selection process will

repeat maxr − 1 times with |U𝛽 | = 𝛽 .

For the rest unqueried data U𝛽′ (Line 19), we apply the self-training

method (Line 19-23), which has shown promising results in semi-

supervised learning [26], to further strengthen 𝑓𝑎 . Self-training is to let

the model train on the unlabeled data and its own pseudo labels. The

work [16] states that self-training is equivalent to entropy regulariza-

tion on the unlabeled data and can improve the model generalization

performance. With self-training method, we generate the self-label

Table 2: Experiment data setup for the victim and attacker.

Benchmarks (number of placements)

Victim ISCAS’89, ITC’99 (4900)

Attacker IWLS’05, ISPD’15 (2100)

dataset P𝛽′ = {(𝑋, 𝑓𝑎 (𝑋 |𝑤𝑎)) |𝑋 ∈ U𝛽′} by the attacker model 𝑓𝑎 (·|𝑤𝑎)
(Line 20). Then, we train the attacker model on the combination of the

victim pseudo label dataset and self-label dataset (Line 21–22). Finally,

the attacker model 𝑓𝑎 (·|𝑤𝑎) is returned (Line 23).

With the information-based iterative data selection method, we can

gradually choose high-informative data that can mostly increase the

prediction ability of the attacker model and thus enhance the model

performance. In addition, we employ the self-trainingmethod to further

improve the model generalization performance with the aid of the rest

unqueried data. Even given the query budget, our method can still

maximize the data utilization to construct the attacker model.

5 EXPERIMENTAL RESULTS

In this section, we first give details of our experiment setup. Then, we

present the results of the confidence-based data selection method and

the information-based iterative data selection method.

5.1 Experiment setup

We benchmark our attack methods on two famous routability predic-

tion models proposed in [28] and [7]. To show our attacks are model-

agnostic, our methods are evaluated under two conditions, where we

first use [28] as the victim model and [7] as the attacker model and

then exchange the roles of the two.

We validate our method with a comprehensive dataset, which con-

sists of 74 different circuit designs from multiple benchmarks. Our

dataset consists of 74 different circuit designs in total, where 29 de-

signs are from ISCAS’89 [3], 13 designs are from ITC’99 [9], 19 de-

signs are from Faraday and OpenCores in the IWLS’05 [2], and 13

designs are from ISPD’15 [4]. We adopt the NanGate 45nm technol-

ogy library [1] with Design Compiler
®
[24] for logic synthesis and

Innovus
®
[6] for physical design. We use different logic synthesis and

physical design settings to generate around 100 placement solutions

for each design. Following [7], input placement features are collected

at the post-placement stage, and the ground-truth routing congestion

results are fetched after global routing. In summary, 7,000 placement

solutions are generated from these 74 designs.

We imitate a real-world scenario by separating all designs into

two datasets for the victim and attacker. Since circuit designs are

seldom shared between companies, the victim and attacker are not

using common designs. In addition, they do not use designs from the

same benchmark because these designs tend to be more similar to

each other. For the victim and attacker dataset, we randomly select

80% for training and 20% for testing. The detailed data splits for the

victim and attacker are shown in Table 2. The victim has designs from

ISCAS’89 [3] and ITC’99 [9] with totally 4900 placement solutions.

The attacker has designs from IWLS’05 [2] and ISPD’15 [4] with 2100

placement results. We assign more training data to the victim model

because the model vendor is expected to provide a well-established

model. In all experiments, the model performance is evaluated based

on the attacker testing set because in practice the attacker’s goal is

to construct a model that can have competitive performance on the

attacker’s own designs.

Following previous routability prediction works [7, 8], we employ

the area under the receiver operating characteristic curve (ROC-AUC)

as the metric to evaluate the model performance. A higher ROC-AUC

indicates that higher precision of routing congestion prediction can be

achieved at the same false positive rate.



Table 3: Routability prediction results with unlimited access to victim model. The victim model structure is [28], and the attacker

model structure is [7].

Models & Methods

ROC-AUC on designs (#nets)

ROC-AUC on all layouts

spi (3.0k) mgc_edit_dist_a (13.1k) usb_funct (20.6k) mgc_des_perf_b (112.9k)

Victim 0.915 0.945 0.906 0.856 0.892

All pseudo-labels 0.862 0.920 0.864 0.833 0.852

Confidence-based 0.891 0.932 0.889 0.845 0.880

Table 4: Routability prediction results with unlimited access to victim model. The victim model structure is [7], and the attacker

model structure is [28].

Models & Methods

ROC-AUC on designs (#nets)

ROC-AUC on all layouts

spi (3.0k) mgc_edit_dist_a (13.1k) usb_funct (20.6k) mgc_des_perf_b (112.9k)

Victim 0.895 0.935 0.874 0.835 0.871

All pseudo-labels 0.871 0.884 0.855 0.797 0.833

Confidence-based 0.895 0.923 0.888 0.837 0.875

We adopt the attack methods mentioned in Section 3 and 4 to con-

struct our attacker models against the victim model based on two

scenarios introduced in Section 2.2. Each attack method runs on one

NVIDIA TITAN RTX GPU with Intel
®
Xeon

®
E5-2687W CPUs. We

use the following hyperparameters to conduct model training for both

the victim and attacker models: We train models for 120 epochs with

Adam optimizer [14], a batch size of 32, and a fixed learning rate of

3 ∗ 10−4. We use an L2 weight decay of 10
−5

and ReLU activation to

combat overfitting and improve generalization.

5.2 Attack results with unlimited access

With unlimited oracle access, we test our confidence-based data se-

lection algorithm against the naive attack method, which the attacker

model is trained on the whole pseudo-label dataset. In Algorithm 1, we

set 𝛼 = 0.4 ∗ |U| and dropout ratio to 0.2 with dropout times 𝑇 = 10.

The model performance is evaluated by the average ROC-AUC over

all designs in the testing set. To valid the model-agnostic property of

our method, we conduct two experiments where the model used as the

victim (attack) model in the first experiment will become the attack

(victim) model in the second experiment. Note that the prediction re-

sults of different layouts from the same design is important in order to

perform optimization. Therefore, we conduct the case study on four

representative designs with net numbers ranging from 3.0k to 112.9k.

First, we apply [28] as the architecture of the victim model, and [7]

as the architecture of the attacker. Table 3 shows that the model trained

by Algorithm 1 has only 1.4% negligible performance gap between the

victim model, while the model trained by the naive attack approach

has 4.5% degradation. The performance loss may come from the im-

perfections of the pseudo labels and the relatively less data amount in

the attacker’s side. In addition, Algorithm 1 can outperform the naive

attack method by 3.3% higher ROC-AUC on all layouts. For each spe-

cific design, the model trained by our algorithm achieves 1.3% to 3.4%

higher ROC-AUC over the model trained by the naive attack method.

Second, we exchange the architectures of victim model and the at-

tackers (victim: [7], attacker: [28]). The results are demonstrated in

Table 4. Different from previous results, Algorithm 1 can outperform

the victim model by 0.5%, while the model trained by the naive attack

method shows 4.4% performance degradation. This outperformance

may be due to the data heterogeneity between the victim’s training

set and the attacker’s one because our result is evaluated in the at-

tacker’s testing set. For different design comparisons, Algorithm 1

outperforms the model trained by naive attack approach with 2.8% to

5.0% improvement. Additionally, Algorithm 1 can get 5.0% improve-

ment in the overall ROC-AUC. To further validate our results, we show

the routability prediction visualization in Figure 3. Algorithm 1 can

(a) Predicted by the victim

model.

(b) Predicted by the model

trained by Algorithm 1.

(c) Predicted by the attacker

model trained by the naive

attack method.

Figure 3: Examples of the routability prediction results produced

by the victim model, the attacker model trained by Algorithm 1

and trained by the naive attack method. Yellow regions indicate

the predicted congestion.

achieve similar prediction results with the victim model, while the

model trained by the naive method predicts extra wrong congestion.

5.3 Attack results with query budget

With limited query budget, we compare the performance of information-

based iterative data selection approach with the random selected

method. Following Section 5.2, we conduct two experiments where we

assign different model architectures to the victim and attacker mod-

els to show our method is model-agnostic. The model performance

is evaluated by the average ROC-AUC over all designs. To show the

effectiveness of our method with different budgets, we benchmark our

method with varied query budgets 𝛽 = {50, 100, 200, 400}. Thus, we
further compare random selection plus self-training with our method

and random selection to examine performance contribution of each

step. To eliminate the bias of randomness, for all the methods, we use

the average ROC-AUC of five rounds as evaluation metrics.

First, we assign [28] to the victim, and [7] to the attacker. Figure 4 (a)

shows that our method (green line) can outperform the model trained

with the random selection (red line) on every 𝛽 and achieve average

1.3% higher ROC-AUC. Most importantly, our method reaches a max-

imum of 2.5% improvement over the random selection with 𝛽 = 50.

In addition, compared our method and the random selection plus self-

training method (blue line), the effectiveness of iterative data selection

is shown by achieving 0.5% improvement on average. Similarly, accord-

ing to the results of the random selection and the one plus self-training

method, self-training method contributes 0.9% ROC-AUC.

Then, we swap the architectures of victim model and the attackers

(victim: [7], attacker: [28]). As shown in Figure 4 (b), Algorithm 2 (green

line) achieves higher ROC-AUC than the random selection (red line)

on every 𝛽 with average 3.4% improvement. Especially when 𝛽 = 50



(a)

(b)

Figure 4: Routability prediction results with a query budget to

access the victim model. (a) Victim: [28], and attacker: [7]. (b)

Victim: [7], and attacker: [28]

and 100, Algorithm 2 achieves remarkable 5.3% and 6.2% improvement

compared to the random selection. This trend can be explained that

when 𝛽 is very limited, selecting high-informative data is very impor-

tant. Then, Algorithm 2 reaches up to a 2.6% higher ROC-AUC and

achieves 1.4% average improvement compared to the random selection

plus self-training method (blue line). Also, the random selection plus

self-training method outperforms the random selection on every 𝛽

with average 1.9% ROC-AUC improvement. As a result, each step in

Algorithm 2 has shown its ability to improve the attacker training.

6 CONCLUSION

In this work, we investigate and propose model extraction attack meth-

ods in ML applications for EDA for the first time. We hold strong

assumptions that the attacker only has unlabeled data and has no

knowledge about the victim model. With unlimited oracle access, we

propose the confidence-based data selection method to effectively

choose reliable pseudo labels to prevent performance degradation. Our

evaluation, which simulates in routability prediction problem, shows

that our confidence-based data selection method not only achieves

competitive performance with the oracle but also gets superior 4.2%

ROC-AUC improvement than the naive attack method. With a limited

query budget, we propose the information-based iterative data selec-

tion method, which selects the most informative data and uses the

self-training method to favor the attacker training. Our result shows

an average 3.4% ROC-AUC improvement compared to the random se-

lection method. Also, our iterative data selection and the self-training

method both show their effectiveness with 1.4% and 1.9% improve-

ment by testing the random selection plus self-training method. In

summary, our model extraction attack methods can achieve the similar

performance with victim model, which indicates that the attacker can

bypass the burdensome label generation process and at the same time

damage the business value of the model vendor. This attack shows its

possibility hinder the development and the commercialization of ML

techniques for EDA. Thus, we hope to raise concerns on ML security

for EDA and motivate future studies.
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