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ABSTRACT

Deep learning has been widely applied in various VLSI design au-

tomation tasks, from layout quality estimation to design optimiza-

tion. Though deep learning has shown state-of-the-art performance

in several applications, recent studies reveal that deep neural net-

works exhibit intrinsic vulnerability to adversarial perturbations,

which pose risks in the ML-aided VLSI design flow. One of the

most effective strategies to improve robustness is regularization

approaches, which adjust the optimization objective to make the

deep neural network generalize better. In this paper, we examine

several adversarial defense methods to improve the robustness of

ML-based lithography hotspot detectors. We present an innovative

design rule checking (DRC)-guided curvature regularization (CURE)

approach, which is customized to robustify ML-based lithography

hotspot detectors against white-box attacks. Our approach allows

for improvements in both the robustness and the accuracy of the

model. Experiments show that the model optimized by DRC-guided

CURE achieves the highest robustness and accuracy compared with

those trained using the baseline defense methods. Compared with

the vanilla model, DRC-guided CURE decreases the average attack

success rate by 53.9% and increases the average ROC-AUC by 12.1%.

Compared with the best of the defense baselines, DRC-guided CURE

reduces the average attack success rate by 18.6% and improves the

average ROC-AUC by 4.3%.

1 INTRODUCTION

Machine learning (ML) techniques, especially those based on deep

learning, have been widely employed in electronic computer-aided

design (CAD) domains ranging from logic synthesis [24] to physical

design [8] and design for manufacturability (DFM) [18]. In DFM,

ML-based lithography hotspot detectors are well studied and serve

as a successful example of ML techniques applied to accelerate the

DFM development cycle. For advanced technology nodes, since the

transistor feature sizes are reaching the limit of conventional optical

lithography systems, lithographic process variations can drastically

affect the manufacturing yield. Therefore, detection of lithography

hotspots - layout patterns that can potentially cause manufacturing

defects - is very important. Conventional lithography hotspot detec-

tion approaches involve optical proximity correction (OPC) [16] and

lithographic simulation, which suffers from high runtime overhead.

To enable faster and accurate lithography hotspot detection, recent

studies has shown that convolutional neural networks (CNN)-based
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Figure 1: Malicious IP vendors may use adversarial perturba-

tions to hide hotspots in immature designs. Designers using

an unrobust ML-based hotspot detector for printability veri-

fication may suffer from great loss at the tapeout stage due

to hidden hotspots.

lithography hotspot detectors can bypass the time-consuming sim-

ulation and achieve state-of-the-art accuracy [22].

However, deep neural networks like CNNs exhibit intrinsic sus-

ceptibility to adversarial perturbations [5, 10, 12]. Adversarial per-

turbations are small but deliberate alterations to the inputs of the

deep neural network, resulting in incorrect outputs. And such sus-

ceptibility to adversarial perturbations poses risks in the VLSI design

flow [19, 20]. Due to the global trends in VLSI design and manufac-

turing, it is common for designers to procure intellectual property

(IP) designs from third-party design vendors and combine them

with components designed in-house to generate the chip layout. A

blueprint of the chip layout can be sent to the foundry for further

mask synthesis and manufacturing. However, third-party design

vendors cannot always be trusted. Before tapeout, the designer can

quickly verify the printability of the purchased designs using a

CNN-based lithography hotspot detector, which can be integrated

into a commercial tool [11].

Figure 1 shows an adversarial scenario where a malicious design

vendor may seek short-cut profits by selling immature IP designs.

The malicious vendor can add adversarial perturbations to lithog-

raphy hotspots to hide these defects, instead of really correcting

them. In this way, CNN-based lithography hotspot detectors may

be fooled and unable to recognize the perturbed hotspots. And if

the perturbed layout is sent to a foundry for tapeout, it can cause a

great loss to downstream chip yield, wasting the designer’s effort.

Another potential risk is that the malicious design vendor may sim-

ply sell bad IP designs to sabotage the design under development,

wasting the designer’s time and resources on design recycling and

fixing poor designs. In summary, the risks posed by adversarial

perturbations can fundamentally undermine the trust in the ML-

based lithography hotspot detectors. Ensuring the reliability of the
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ML-based lithography hotspot detectors is a critical step toward the

feasibility of ML’s integration into the VLSI design flow. However,

methods of robustifying ML-based lithography hotspot detectors

are rarely discussed.

Recent ML research has demonstrated that adversarial perturba-

tions pose risks in practically every application where deep neural

networks are used [5, 10, 12]. Borrowing ideas from computer vision,

prior works have also studied CAD-related tasks like lithography

hotspot detection, proposing approaches of generating adversarial

perturbations on via layout hotspots [11, 23]. It is worth noting

that there are some important differences of adversarial perturba-

tions between computer vision and lithography. In computer vision,

typical perturbation methods make an imperceptible perturbation

to each pixel [1], inducing incorrect model output. In lithography,

however, such a method is infeasible because (1) both the layout

patterns and the perturbations are binary (e.g., insertion or removal

of pattern components), and (2) perturbations should pass design

rule checking (DRC) and thus are constrained in their sizes, shapes

and locations. Prior works typically make perturbations to the lay-

out iteratively to ensure DRC-clean at each step. [11] focus on the

insertion of fraudulent sub-resolution assistant features (SRAFs)

and use pixel-based gradient method to find the best SRAF combi-

nation. Following [11], [23] considers removal of preexisting SRAFs

and proposes an efficient group gradient method to optimize the

perturbation, yielding better performance in successful perturba-

tion generation. However, these works focus on the perturbation

methods and rarely discuss defense methods. To the best of our

knowledge, little systematic research on the methodologies of en-

hancing the robustness of ML for CAD has been found.

Motivated by the risks of adversarial perturbations, in this pa-

per, we propose a customized regularization-based defense method,

called DRC-guided CURE, to robustify ML-based lithography

hotspot detectors1. We design the regularizer based on DRC con-

straints of the adversarial perturbations. In our experiments, we

focus on the white-box attacker with full knowledge about the

model, since this is the strongest attacker setting. Experiment re-

sults show that DRC-guided CURE achieves superior performance

in both robustness and accuracy compared with the vanilla model

(no defense applied), adversarial training and CURE. Our main

contributions are summarized as follows:

• We analyze the effectiveness of existing defense techniques,

including adversarial training and regularization-based ap-

proaches, in a case study of lithography hotspot detection.

We demonstrate their limitations in robustifying the ML-

based lithography hotspot detector.

• Wepropose an innovative regularization-based defensemethod,

called DRC-guided CURE, which is customized for robustify-

ing ML-based lithography hotspot detectors. Our proposed

DRC-guided CURE outperforms all baseline defense tech-

niques, decreasing the perturbation success rate by 53.9%

compared with the vanilla model. Moreover, this robustness

improvement costs no accuracy loss. Instead, it even im-

proves the area under the ROC curve of the model by 12.1%.

1In order to contribute to the reproducibility and fair comparison in ML for CAD,
the framework and the dataset used in our experiment are anonymously open-
sourced at https://github.com/panjingyu/Robustify-ML-Based-Lithography-Hotspot-
Detectors.

Figure 2: Illustration of simulated printed patterns of vias

layouts without SRAFs and with SRAFs.

• We provide an ablated analysis on the effectiveness of our

proposed DRC-guided CURE in the white-box attacker set-

ting. We give intuitive explanations of DRC-guided CURE’s

capability of improving both robustness and accuracy of the

ML-based lithography hotspot detector.

2 PRELIMINARIES

In this section, we will introduce backgrounds related to adversarial

defenses for ML-based lithography hotspot detectors.

2.1 ML-based Lithography Hotspot Detection

Lithography hotspot detection facilitates the VLSI back-end design

and sign-off flow by early detection of the lithography hotspots. The

conventional approach to lithography hotspot detection is based

on simulation using physical models of optical lithography. Despite

its accuracy, such simulation costs lots of computational resources

and is very time-consuming, especially for modern VLSI designs.

When a lithography hotspot is detected, resolution enhancement

techniques (RETs) such as SRAF insertion [2, 4, 21] and OPC [16] are

applied to compensate for lithography distortion and thus fix the

hotspot. Figure 2 shows illustration of simulated printed patterns of

vias layouts without SRAFs and with SRAFs. If the vias are printed

as is, the resulting printed output would be only a small region of

the vias pattern, which is far from the desired result. With SRAF

insertion, the printed pattern canmore accurately reflect the desired

vias pattern.

Due to the prohibitive run-time of conventional lithography sim-

ulation, recent studies have proposed alternative methods to speed

up the hotspot detection process using machine learning [14, 22].

Machine learning solutions seek to statistically model the underly-

ing relationships between lithographic features and the correspond-

ing layout’s printability. Note that, by transforming the lithographic

features into images, one can pose the lithography hotspot detection

problem as a binary image classification problem. Borrowing ideas

from computer vision, recent work has proposed convolutional

neural networks (CNN) for this problem, achieving state-of-the-art

accuracy [22].

2
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2.2 Adversarial Perturbations on Lithography
Hotspot Patterns

To the best of our knowledge, two gradient-based white-box adver-

sarial perturbation methods have been proposed for CNN-based

lithography hotspot detectors [11, 23]. The first method is the pixel-

based gradient method [11] which generates DRC-clean fraudulent

SRAFs and makes attempts based on pixel gradients to add fraudu-

lent SRAFs to the original layout to fool the lithography hotspot

detector. In [11], hotspot clips are converted to images, and each

valid fraudulent SRAF region is a block of pixels. In the pixel-based

gradient method, given a set of valid SRAF shapes, the algorithm

iterates the summation of gradients of all pixels in each possible

location. Fraudulent SRAFs with negative gradient sums are it-

eratively inserted into the layout in the ascending order of their

gradient sums, until either target neural network gives incorrect

output or the attack constraint is met.

The second method, which is known as the group gradient

method [23], makes improvements based on the pixel-based gradi-

ent method [11]. The group gradient method randomly generates

a set of DRC-clean SRAF candidates and iteratively optimizes the

weight of each candidate to minimize the perturbation given the

constraint of successfully fooling the deep neural network. [23]

also expands the adversarial perturbation space by considering re-

moval of preexisting SRAFs. As a result, the group gradient method

reports better attack success rate than the pixel-based gradient

method. Therefore, we will focus on the group gradient method as

our attacker model in our experiments.

2.3 Threat Model

2.3.1 Setting. We explore the scenario of a designer considering

the purchase of a macro from a third-party intellectual property (IP)

vendor, as posed in previous studies of threats to the VLSI design

flow [19]. The IP vendor distributes hard macros in GDS-II format,

where the layout is allegedly enhanced for lithography using RETs.

As part of the validation process, the designer checks the macro

to establish its quality by using a CNN-based hotspot detector.

And the attacker’s goal is to generate minimal perturbations on a

lithography hotspot to fool the targetML-based lithography hotspot

detector into misclassifying the perturbed hotspot as a non-hotspot.

2.3.2 Attacker Capabilities. Following research on adversarial at-

tacks in deep learning, the attackers can be roughly categorized into

white-box attackers and black-box attackers according to the con-

straints on their access to information about the target model. For

example, given a CNN-based target model, a black-box attacker can

only make queries to the model and access the input-output pairs.

In contrast, white-box attackers posses access to all the information

including the hyperparameters of the target model (e.g., its archi-

tecture, its training algorithm), the parameters (e.g., the weights

and bias) of each layer, the training data, and so on. Therefore, a

white-box attacker is a stronger attacker model than a black-box

attacker [1, 5, 12]. In this work, we consider defense techniques

against white-box attackers.

3 PROBLEM FORMULATION

Consider a white-box attacker A with full knowledge about the

architecture, training algorithms, and weights and bias of each layer

of the target ML-based lithography hotspot detector 𝑓 , A crafts

adversarial perturbations to a set of lithography layout patterns.

The objective of robustifying an ML-based lithography hotspot

detector 𝑓 is tomaximize the accuracy of 𝑓 on the dataset containing
adversarially perturbed lithography layout patterns.

For a fair evaluation on the overall accuracy of the target hotspot

detector, we use the area under the receiver operating charac-

teristic curve (ROC-AUC) as the metric for accuracy. Besides, to

directly analyze the robustness against adversarial perturbations

on layout hotspots, we define hotspot accuracy as the ratio of

the number of correctly detected hotspots and the total number of

hotspots. We also define attack success rate 𝑟 as

𝑟 =
|{True Positives} ∩ {Successful attacks}|

|{True Positives}|
,

where {Positives} denotes the set of hotspots that can be correctly

detected by the detector before any adversarial perturbation, and

{Successful attacks} denotes the set of hotspots that are incorrectly

undetected by the detector after adding adversarial perturbations

by the adversary A.

4 DEFENSE METHODOLOGIES

In this section, we first introduce two baseline defense methods,

adversarial training and curvature regularization. Then we present

our innovative DRC-guided CURE method.

4.1 Adversarial training

Assuming that the defender is aware of the risks of adversarial

perturbations on hotspot detectors, it can robustify the model by

including adversarial layouts into the training dataset but with true

hotspot labels and then retraining the model. This method is known

as adversarial training [13]. Algorithm 1 illustrates the procedure

of adversarial training.

Adversarial training has recently been shown to be one of the

most effective methods for increasing the robustness of a deep

neural network against adversarial perturbations. Recent studies

showed that adversarial training correlates to decreased curvature

of the loss [15]. Intuitively, a smaller curvature of the loss reflects a

smoother decision boundary of the classifier, which is more robust

against small random perturbations to the inputs.

4.2 Curvature Regularization (CURE)

The CURE method robustify the model by adjusting its optimiza-

tion objective. CURE aims at directly minimizing the curvature of

the loss to achieve robustness that is comparable to adversarial

training [15]. In order to minimize the curvature of the loss, the

CURE regularizer should penalize large eigenvalues of the Hessian

𝐻 of the loss ℓ at input point 𝑥 , since the eigenvalues correspond
to the amount of curvature at the direction of their corresponding

eigenvectors. Let 𝜆1, . . . , 𝜆𝑑 denote the eigenvalues of𝐻 . To encour-

age all eigenvalues to be small, the CURE regularizer 𝐿CURE can be

formulated as 𝐿CURE =
∑
𝑖 𝜆

2
𝑖 , which corresponds to the Frobenius

norm of the Hessian 𝐻 . With function 𝑝 (𝜆) = 𝜆2, we have

𝐿CURE =
∑

𝑖

𝑝 (𝜆) = trace(𝑝 (𝐻 )) = E(𝑧𝑇 𝑝 (𝐻 )𝑧) = E | |𝐻𝑧 | |2 ,

3
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Algorithm 1 Adversarial Training

Input: Training hotspot data 𝐷𝐻 , training non-hotspot data 𝐷𝑁 , a

trained ML-based lithography hotspot detector 𝑓 , a training
algorithm 𝑇 , attacker function A(𝑑, 𝑓 ) which adds adversarial

perturbations to hotspot data 𝑑 in order to fool model 𝑓 and

outputs the perturbed data, and the number 𝑁 of perturbed data

samples.

Output: Robustified model 𝑓 .

1: 𝐷 ′
𝐻 ← {} ⊲ Initialize a set of adversarial hotspot data.

2: for 𝑑𝐻 ∈ 𝐷𝐻 do

3: 𝐷 ′
𝐻 = 𝐷 ′

𝐻 ∪ A(𝑑𝐻 , 𝑓 )
4: if |𝐷 ′

𝐻 | ≥ 𝑁 then

5: End this for loop.

6: 𝐷 = 𝐷 ′
𝐻 ∪ 𝐷𝐻 ∪ 𝐷𝑁 ⊲ Construct the training dataset.

7: 𝑓 ← 𝑇 (𝑓 , 𝐷) ⊲ Retrain the model.

8: return 𝑓

where the expectation is taken over 𝑧 ∼ N(0, 𝐼𝑑 ). By using a fi-

nite difference approximation of the Hessian 𝐻 , we have 𝐻𝑧 ≈
∇ℓ (𝑥+ℎ𝑧)−∇ℓ (𝑥)

ℎ , where ℎ denotes the discretization step. Therefore,

the regularizer becomes

𝐿CURE (𝑥) =
1

ℎ2
E | |∇ℓ (𝑥 + ℎ𝑧) − ∇ℓ (𝑥) | | ,

which involves computing an expectation over 𝑧 and penalizes

large curvatures over all directions. Since prior works [3, 7] have

shown that the direction of the gradients indicates the directions

of high curvature, it is usually a natural choice to make 𝑧 in line

with the gradient direction. Besides, in practice, common image-

based adversarial problems usually involve ℓ∞ norm constraints

on the adversarial perturbations. Hence, [15] set the step 𝑧 to the

sign of the gradient multiplied with a normalization factor, written

as 𝑧 = sign(∇ℓ (𝑥))
| |sign(∇ℓ (𝑥)) | | . Finally, neglecting the 1

ℎ2 factor, the CURE

regularizer is formulated as

𝐿CURE (𝑥) = | |∇ℓ (𝑥 + ℎ𝑧) − ∇ℓ (𝑥) | |2,

where ℎ controls the scale of the discretization step. And the overall

optimization objective of the model becomes ℓ (𝑥) + 𝜂𝐿CURE (𝑥).

4.3 DRC-guided CURE

Utilizing the DRC constraints on the adversarial lithography per-

turbations, we propose the DRC-guided curvature regularization

method (DRC-guided CURE) to robustify ML-based lithography

hotspot detectors. Regarding the DRC constraints, we consider

both fraudulent SRAF insertion and preexisting SRAF removal.

DRC-clean fraudulent SRAF insertion must satisfy the following

constraints:

• Fraudulent SRAFs can only be inserted to the SRAF layer.

• Fraudulent SRAFs should be rectangles with a fixed width

of 40nm and a variable height between 40-90nm, at a resolu-

tion of 1nm. The SRAF can be placed either horizontally or

vertically.

• The Euclidean distance between any two SRAFs should be

at least 40nm.

• Fraudulent SRAFs should not overlap with the forbidden

region surrounding the vias in a layout.

(a) Via and SRAF patterns. (b) The corresponding regions for possi-
ble adversarial perturbations.

Figure 3: Illustration of via and SRAF patterns of a given

layout and its corresponding regions for possible adversar-

ial perturbations. In (a), the red rectangles denote existing

SRAFs, and the white squares denote vias. In (b), the green

region denotes the DRC-clean fraudulent SRAF insertion

spots. And the red rectangles denote the adversarial removal

candidates, which correspond to the preexisting SRAFs.

According to these constraints, we can calculate the valid re-

gion for fraudulent SRAF insertion given a layout with preexisting

vias and SRAFs. The valid removal candidates of adversarial per-

turbations are simply the preexisting SRAFs. Figure 3(a) shows

an example of vias layout hotspot clip, where the red rectangles

denote existing SRAFs and the white squares denote the vias. And

Figure 3(b) shows the corresponding regions for potential adver-

sarial perturbations. In Figure 3(b), the green region marks where

DRC-clean fraudulent SRAF insertion is possible. The red rectangles

denote removal candidates of adversarial perturbations, which are

simply preexisting SRAFs. To ease the calculation of such regions

for each layout, we consider the Chebyshev distance (i.e., the 𝐿∞ dis-

tance) as an approximation of the Euclidean distance in the spacing

constraints. Besides, we also assume the inserted fraudulent SRAFs

should not be too far from the vias, and thus adding a limit to the

outer boundaries of the possible adversarial insertion region. And

the inner boundaries of the possible adversarial insertion region

is determined by the spacing constraints regarding the preexisting

SRAFs and the forbidden zone around the vias.

Based on the calculation of the regions of possible adversarial

perturbations, we re-design the regularization term in CURE and

propose the DRC-guided CURE. It is worth noting that, in CURE,

the rationale behind the choice of step 𝑧 = sign(∇ℓ (𝑥))
| |sign(∇ℓ (𝑥)) | | is that

it targets robustness against ℓ∞-constrained perturbations. How-

ever, the ℓ∞ constraint does not hold in adversarial perturbations to

lithography hotspot layouts. Instead, the adversarial perturbations

that DRC-guided CURE targets is constrained by the DRC-clean

fraudulent SRAF insertion region and the locations of preexisting

SRAFs. Therefore, we propose a DRC-guided step 𝑧′ = 𝑚𝑖−𝑚𝑟
| |𝑚𝑖−𝑚𝑟 | |

,

where𝑚𝑖 is the binary mask of the region for potential SRAF inser-

tion (e.g., the green region in Figure 3) and𝑚𝑟 is the binary mask

of the region for potential SRAF removal (e.g., the red rectangles

in Figure 3). Here, 𝑚𝑖 ,𝑚𝑟 ∈ {0, 1}𝐻×𝑊 , where 𝐻 and𝑊 denote

the height and width of the via layout, respectively. Therefore, we
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Layer Kernel size Stride Activation Output Size

conv_DCT 128 × 128 128 - (20, 20, 32)

conv_1 3 × 3 1 ReLU (20, 20, 16)

conv_2 3 × 3 1 ReLU (20, 20, 16)

pool_1 2 × 2 2 - (10, 10, 16)

conv_3 3 × 3 1 ReLU (10, 10, 32)

conv_4 3 × 3 1 ReLU (10, 10, 32)

pool_2 2 × 2 2 - (5, 5, 32)

linear_1 - - ReLU 256

linear_2 - - - 2

Table 1: Model architecture.

formulate the DRC-guided CURE regularizer as

𝐿DRC (𝑥) = | |∇ℓ (𝑥 + ℎ𝑧′) − ∇ℓ (𝑥) | |2,

where ℎ controls the scale of the DRC-guided step 𝑧′. The overall
optimization objective then become the regularized loss function

ℓ (𝑥) + 𝜆𝐿DRC (𝑥), where 𝜆 controls the strength of DRC-guided

CURE.

In summary, our proposed DRC-guided CURE improves CURE

by penalizing the curvature in the direction 𝑧′ determined by the

DRC constraints, rather than the gradient-guided direction 𝑧 as

proposed in CURE.

5 EXPERIMENTS

5.1 Experiment Setup

To investigate the effectiveness of our proposed DRC-guided CURE

method, we compare the accuracy and robustness of the model

trained using the DRC-guided CURE method with several baseline

defense algorithms. Our baselines include the vanilla method (i.e.,

normal training without defense techniques), adversarial training

and CURE. Our attacker adopts the state-of-the-art group gradient

method [23]. We implement the all the defense methods and the

attack method in Python using the PyTorch framework [17]. Our

experiments run on a NVIDIA TITAN RTX GPU with Intel® Xeon®

Gold 6136 CPU.

Regarding the via layout hotspot dataset, we use legacy node

via designs that are verified and simulated using Mentor Graphics

Calibre Design For Manufacturability tool suite [6]. We construct

our dataset based on the raw via layout data in GDS-II format from

[23]. We transform the raw via layout clips of 2𝜇𝑚 × 2𝜇𝑚 size to

ID
Original Hotspot Accuracy

Vanilla AT CURE DRC-guided

1 0.79 0.69 0.83 0.83

2 0.71 0.66 0.81 0.86

3 0.76 0.75 0.84 0.83

4 0.71 0.66 0.80 0.88

Average 0.743 0.690 0.820 0.850

Table 2: Comparison of hotspot accuracy before perturbation

attack when different defense methods are applied. Here, AT

denotes adversarial training.

images with a resolution of 2048× 2048 pixels. The image-based via

layout dataset is split randomly into a training dataset and a testing

dataset. The training dataset includes 68565 via layout clips with

5012 hotspots. The testing dataset is composed of four groups, each

of which is composed of 100 non-hotspot clips and 100 hotspot

clips. Given a trained target model, the attacker model generates

adversarial perturbations at its best effort based on the hotspot clips

of the four testing groups. Besides, to ensure a strong attackermodel,

we relax the constraint on the maximal number of adversarial

perturbations in each via layout to 20, posing a challenging setting

to the defense methods.

Table 1 gives the configuration of our model architecture, which

directly follows [22]. The conv_DCT layer is equivalent with the

Discrete Cosine Transform (DCT)-based feature tensor extraction in

[22], transforming a layout clip image to a tensor of DCT frequency

components. For both the vanilla method and the defense methods,

we train the model for 40000 steps using the Adam optimizer [9]

and set the initial learning rate to 0.01, with a batch size of 128, and

L2 regularization strength of 0.00005. During training, to combat

over-fitting caused by the imbalance in the number of hotspot

clips and non-hotspot clips in the training set, we re-sample the

hotspots to ensure the numbers of hotspot clips and non-hotspot

clips are balanced in each batch of data. For adversarial training,

we empirically set the number of adversarially perturbed layouts

to 750, which is around 15% of the hotspot clips in the training set.

For a fair comparison, we retrain the model from scratch on the

training set with adversarial perturbations. For CURE, we set the

step scale ℎ = 6 and the strength of CURE 𝜆 = 0.33. For DRC-guided
CURE, we set the step scale ℎ = 1 and the strength 𝜆 = 0.2. For the
group gradient method attack, we follow the hyperparameters in

[23].

5.2 Evaluation of Robustified Models

Figure 4 compares the ROC-AUC of the model over the four testing

groups and the average ROC-AUC, with the presence of adversar-

ial perturbations. In each of the four testing group, our proposed

DRC-guided CURE outperforms the vanilla model, adversarial train-

ing and CURE. Compared with the vanilla model, the DRC-guided

CURE increases the average ROC-AUC from 0.786 to 0.881, which

is a 12.1% improvement. As for the baseline defense methods, the

model trained using adversarial training suffer from accuracy degra-

dation. This is because the adversarial examples seen by the model

ID
Hotspot Accuracy After Attack

Vanilla AT CURE DRC-guided

1 0.43 0.60 0.66 0.70

2 0.47 0.60 0.62 0.68

3 0.38 0.57 0.60 0.68

4 0.47 0.61 0.64 0.70

Average 0.438 0.595 0.630 0.690

Table 3: Comparison of hotspot accuracy after perturbation

attack when different defense methods are applied.
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Figure 4: Comparison of ROC-AUC of different defense methods at the presence of adversarial perturbations.

in the adversarial training has limited coverage of the whole per-

turbation space. Therefore, adversarial training only provides ro-

bustness against a small subset of all the possible adversarial per-

turbations. Furthermore, the white-box attacker is actually highly

flexible, since it can adjust the generated adversarial perturbations

according to the parameters of the model. Thus, adversarial training

may finally provide little robustness to the target model. On the

other hand, training on perturbed layouts can mislead the model

to learn some trivial features and neglect important features from

unperturbed layouts, thus hampering the accuracy of the model.

And compared with CURE, our proposed DRC-guided CURE still

shows an advantage of 4.3% higher ROC-AUC. This result proves

the effectiveness of the DRC-guided step 𝑧′ which utilizes informa-

tion of the via layout patterns and regions of potential adversarial

perturbations.

To directly analyze the robustness of the target model on the

perturbed hotspot data, we compare the variation of hotspot accu-

racy before and after adversarial perturbations for different defense

methods, along with comparison of their attack success rates. Ta-

ble 2 and Table 3 shows the hotspot accuracy of the target model

on the four testing groups before and after perturbations attack,

respectively. Table 4 shows the corresponding attack success rate

of the group gradient method on the four testing groups. AT in the

tables denotes adversarial training. The vanilla model suffers from

a high attack success rate of 40.8%, which indicates a drastic drop of

average hotspot accuracy from 74.3% to 43.8%. For defense methods,

adversarial training shows an even larger accuracy degradation

than the vanilla model, failing to robustify the model. This result

demonstrates that adversarial training yields poor convergence

for the target model. CURE provides much better robustness than

ID
Attack Success Rate

Vanilla AT CURE DRC-guided

1 0.456 0.377 0.205 0.157

2 0.338 0.424 0.235 0.209

3 0.500 0.427 0.286 0.181

4 0.338 0.530 0.200 0.205

Average 0.408 0.440 0.231 0.188

Table 4: Comparison of attack success rates when different

defense methods are applied.

adversarial training, showing a much lower average attack success

rate of 23.1% and a higher average hotspot accuracy of 63.0% after

attack. Furthermore, our proposed DRC-guided CURE outperforms

both adversarial training and CURE, showing a 53.9% lower av-

erage attack success rate of 18.8% than the vanilla model. Even

compared with CURE, the attack success rate of DRC-guided CURE

is still 18.6% lower, which proves the effectiveness of our customized

regularizer. DRC-guided CURE also shows a superior hotspot accu-

racy after attack of 69.0%, which is 57.5% higher than the vanilla

model The DRC-guided CURE can improve the hotspot accuracy of

the model even without the presence of adversarial perturbations

because it co-optimize both the value and the sharpness (i.e., curva-

ture) of the loss simultaneously, helping the loss function converges

at a smooth surface. Therefore, the model trained by DRC-guided

CURE achieves a lower inference loss, which corresponds to higher

accuracy. Besides, such regularization on curvature also help pre-

vent over-fitting to the training data, improving the generality of

the model.

5.3 Visualization of Adversarial Perturbations
after Defense

In the following, we intuitively analyze the robustness of the ML-

based lithography hotspot detector trained using our proposed

DRC-guided CURE. Figure 5 shows two examples of successful ad-

versarial perturbations before and after DRC-guided CURE defense.

The white blocks denote preexisting SRAFs and vias in the layout,

while the colored blocks denote adversarial perturbations. To be

specific, the green blocks denote inserted fraudulent SRAFs, and

the red blocks denote removed preexisting SRAFs. In the group

gradient method, adversarial perturbations are added to the layout

iteratively. Therefore, when performing group gradient method,

if fewer adversarial perturbations are needed to flip the output of

hotspot detector, the hotspot detector is less robust. For the vanilla

model, successful adversarial perturbations require insertion of

merely three fraudulent SRAFs in example 1 and removal of one

preexisting SRAF in example 2. However, after defense using DRC-

guided CURE, successful adversarial perturbations require a greater

number of modifications and a wider range of locations than for

the vanilla model, in both examples. These two examples demon-

strate that with the defense of DRC-guided CURE, the difficulty

of generating successful adversarial perturbations is significantly

higher.

6

Authorized licensed use limited to: Duke University. Downloaded on July 02,2025 at 04:19:23 UTC from IEEE Xplore.  Restrictions apply. 



(a) Example 1 fooling the vanilla model. (b) Example 1 fooling the model trained
using DRC-guided CURE.

(c) Example 2 fooling the vanilla model. (d) Example 2 fooling the model trained
using DRC-guided CURE.

Figure 5: Two examples of adversarial perturbations required

to fool theML-based lithography hotspot detector before and

after DRC-guided CURE defense. Here, green blocks denote

inserted fraudulent SRAFs, and red blocks denote deleted

preexisting SRAFs.

6 CONCLUSIONS

In this work, we propose a customized DRC-guided CURE method

to robustify ML-based lithography hotspot detectors in order to

combat the risks posed by adversarial perturbations. We compare

the robustness of the target model trained using DRC-guided CURE

with the models trained using the vanilla method, adversarial train-

ing and CURE. Our proposed DRC-guided CURE proves to provide

the most robustness to the model compared with the baseline meth-

ods, decreasing the attack success rate by 53.9%. Furthermore, DRC-

guided CURE also increases the accuracy of the model, showing

an improvement of the ROC-AUC by 12.1%. Compared with the

best result among the baseline defense methods, DRC-guided CURE

decreases the average attack success rate by 18.6% and improves

the average ROC-AUC by 4.3%.
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