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Lithography Hotspot Detection Based on
Heterogeneous Federated Learning With
Local Adaptation and Feature Selection

Jingyu Pan™, Xuezhong Lin, Jinming Xu, Yiran Chen

Abstract—Since the scaling of advanced technology nodes is
pushing to its physical limit, lithography hotspot detection (LHD)
has become more significant than ever in design for manu-
facturability. Recently, machine learning techniques have been
deployed to greatly reduce simulation time for hotspot detection,
but high-quality data are required to build a model. Many
design companies do not have enough high-quality data and are
hesitant to share it for fear of intellectual property theft or
model ineffectiveness. Furthermore, using locally trained models
with limited and similar data can lead to overfitting and a lack
of generalization and robustness when applied to new designs.
In this article, we propose a heterogeneous federated learning
framework for LHD that can address the aforementioned issues.
Our framework can overcome the challenges of nonindependent
and identically distributed data and heterogeneous communi-
cation, ensuring high performance and good convergence in
various scenarios. The proposed framework creates a more robust
centralized global submodel through heterogeneous knowledge
sharing while keeping local data private. Then, it combines the
global submodel with a local submodel for better adaptation to
local data heterogeneity. Our experimental results show that the
proposed framework outperforms other state-of-the-art methods.

Index Terms—Design for manufacture, federated learning,
lithography, machine learning (ML).

I. INTRODUCTION

S TECHNOLOGY scaling is reaching its physical limits,

the lithography process has become crucial for main-
taining Moore’s law [1]. Recently, the advances in transistor
technology have pushed the transistor feature size to be
smaller than the light wavelength, posing challenges to lithog-
raphy processing. However, recent advances in lithography
processing, e.g., multipatterning, optical proximity correction,
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etc., have made it possible to overcome the subwavelength
lithography gap [2]. Despite such advances in lithography
processing, because of the complexity of sub-14-nm design
rules and the process control, circuit designers have to consider
the design for lithography-friendliness as part of the design
for manufacturability (DFM) [3].

Nowadays, lithography hotspot detection (LHD) has become
no longer optional in DFM of modern sub-14-nm VLSI
designs. A lithography hotspot is a mask layout location that
is susceptible to having fatal pinching or bridging owing
to the poor printability of certain layout patterns. To avoid
manufacturing failures due to poor print quality, designers
usually conduct full mask lithography simulations to identify
such lithography hotspots at the design stage. Despite the fact
that lithography simulation is the most precise way to identify
lithography hotspots, it can be very computationally costly to
get a complete understanding of the chip’s characteristics. To
save simulation time, pattern matching and machine learning
(ML) techniques have been used as more efficient alterna-
tives [4], [5], [6], [7], [8], [9]. For example, a hotspot library
can be built to match and identify hotspot candidates [5].
In [6], low-dimensional feature vectors were extracted from
layout clips, and ML or deep learning techniques were used
to predict hotspots. It is clear that the effectiveness of the
aforementioned methods is heavily reliant on both the quantity
and quality of the underlying hotspot data which is used to
build the library or train the model. Without sufficient data,
these methods may lack generalization ability, particularly for
topologies in advanced technology nodes or unique circuit
patterns.

In reality, each design company can have its own dataset
on hotspots, which can be homogeneous' and does not suffice
to have the model/library reach a balance point of robustness
and generalability via local learning. At the same time, due to
data privacy concerns, design companies are usually hesitant
to share their data directly with either other companies or
tool developers for centralized learning. To address this issue,
advances in federated learning in the deep learning community
offer a promising solution.

Here, we justify the need for applying federated learning
in the scenario of LHD. After optical proximity correction,
design houses are able to pinpoint layout hotspots through

1Homogeneous hotspot data refers to the hotspot candidates that share the
same feature space due to similar design patterns or layout topologies.
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lithography simulation, circumventing the need to proceed to
the fabrication stage. Besides, after a new technology node is
developed, a foundry can only obtain limited layout patterns
from some test chips. As a consequence, a design house
must employ lithography simulation to identify their unique
hotspot patterns and dedicate efforts to DFM development
to rectify these hotspots. Nevertheless, the design houses
are unwilling to share proprietary information about their
specific hotspot patterns. This unwillingness to share data
necessitates federated learning as a valuable supplement to
traditional simulation methods. Unlike centralized learning
which requires data to be collected at a central server or local
learning which merely uses a company’s own data, federated
learning allows each company to train the model locally and
then upload only the updated model to a central server. And
the central server will aggregate and distribute the updated
global model back to each company.

Though federated learning ensures no leakage of pri-
vate layout information throughout model development, its
performance (or even convergence) can suffer when the data is
heterogeneous (or nonindependent and identically distributed,
i.e., non-IID). This is actually very common for lithogra-
phy hotspot data as each design company has its unique
circuit topologies or patterns, which lead to heterogeneity
in lithography hotspot patterns. To address this challenge,
various federated learning techniques have been proposed by
the deep learning community [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], such as federated transfer learning that
incorporates knowledge from the source domain [10] and fed-
erated multitask learning that allows the model to learn shared
and unique features of different tasks [11]. And to provide
more local model adaptability, [12] used meta-learning to fine-
tune the global model to generate different local models for
different tasks. Arivazhagan et al. [13] defined the output layer
of each client’s neural network model as the personalization
layer for the local personalized update, which did not explain
clearly why the output layer is used as a personalization
layer. Liang et al. [14] divided the model into global and
local representations, which can result in suboptimal results
if the global representation is significantly larger compared to
the local representation during the alternating model update
process. Hanzely and Richtarik [15] added a regularization
term between the local model and the global model to seek
an explicit tradeoff between the global model and the local
model. But this tradeoff is hard to learn from the small amount
of private data per customer. Pillutla et al. [16] updated part
of the neural network model blocks of each client individually
and proposed two model update methods. But it did not take
into account the case of model heterogeneity. Li and Wang [17]
proposed a technology called FedMD, which uses distillation
technology to uniformly aggregate the model output of each
client, but it requires a feature-rich and sufficient public dataset
for knowledge distillation, which is often difficult to obtain.
Shen et al. [18] proposed federated mutual learning which
uses a knowledge distillation approach for personalization that
applies regularization to predictions between local and global
models. However, it uses a unified global model as the basis for
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personalization and cannot provide the optimal personalization
model for clients with heterogeneous data.

In [19], a framework called FedProx was introduced that
addressed statistical heterogeneity by adding a proximal reg-
ularization term to the objective function. However, this
approach may not be suitable for LHD, which has unique
characteristics compared to typical deep learning applications.
LHD is performed by a small number (typically between
several and tens) of design companies, each of which has a
relatively small amount of data (thousands to tens of thousands
of layout clips). Previous federated learning methods [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19] are not
designed to handle these specific requirements. For instance,
meta-learning may be insufficient in ensuring model consis-
tency among local nodes when the number of nodes is small,
whereas FedProx strictly enforces consistency, resulting in
limited local adaptivity to support local data heterogeneity.
Therefore, a balanced framework that can properly handle
both local heterogeneity and global robustness is essential for
effective LHD.

To address the aforementioned issues in centralized learn-
ing, local learning, and federated learning, in this work,
we propose an accurate and efficient LHD framework using
heterogeneous federated learning with local adaptation (HFL-
LA). The major contributions are summarized as follows.

1) The proposed framework takes into consideration the
domain knowledge of LHD to create a federated
learning-based framework that can handle data hetero-
geneity. A local adaptation mechanism is implemented
to balance the model’s robustness against local data
heterogeneity and its global accuracy.

2) Instead of empirically deciding the layout feature rep-
resentation, we present an efficient approach to decide
the low-dimensional representation of layout clips by
automatically eliminating redundant information via a
regularization-based training procedure, resulting in a
compact and precise feature representation.

3) An HFL-LA algorithm is introduced to manage data
heterogeneity with a combination of a global submodel
for shared knowledge and local submodels for adapting
to specific data features. A synchronization mechanism
is also introduced to address the communication hetero-
geneity issue during training.

4) We present a thorough theoretical analysis to ensure
the convergence of the proposed HFL-LA algorithm
and to reveal the relationship between the model’s
hyperparameters and its convergence performance.

The experimental results demonstrate the superiority of
our framework compared with other local, centralized, or
federated learning methods [4], [19], [20] on both open-
source and industrial layout hotspot datasets. Our framework
surpasses [19], [20] with 7%—11% accuracy improvement
and a much lower false positive rate (FPR). Furthermore,
our framework maintains its performance even when the
number of clients or the size of the dataset increases, while
the performance of local learning [4] deteriorates in such
situations.
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Fig. 1. (a) Example of a layout clip. (b) Local density extraction.
(c) Concentric circle sampling.

II. BACKGROUND
A. Layout Hotspot Detection

For LHD, the raw dataset is composed of hotspot and non-
hotspot layout clips, each of which contains several polygonal
patterns. Fig. 1(a) gives an example of a lithography layout
clip. If layout clips are directly used as features without proper
preprocessing for ML-based models, the computation cost for
both model training and inference will be high due to the
complexity of high dimensional data. To address this issue,
many approaches of feature tensor extraction were proposed
to reduce the data dimensionality. In earlier LHD and optical
proximity correction works [2], [4], local density extraction
and concentric circle sampling have been studied. Fig. 1(b)
displays an example of local density extraction, where it
converts a layout clip to a vector by calculating the density of
patterns in each rectangular region. Fig. 1(c) gives an example
of concentric circle sampling, where the density is sampled
from the layout clip in a concentric circling way. These
approaches extract vector-based features by exploiting prior
knowledge of lithography layout patterns. Indeed, they help
reduce the feature complexity in ML-based LHD. However,
since these methods ignore the spatial information surrounding
the polygonal patterns within the layout clips, they inevitably
fail to utilize the spatial information which is useful for LHD
and usually causes low detection accuracy [4].

A promising feature extraction approach [4] is to encode the
spectral domain information, which inherently reflects spatial
information. For example, [4] applies discrete cosine transform
(DCT) to convert a layout clip pattern into coefficients of
frequency components in the spectral domain and uses the
frequency coefficients as the feature representation of the
layout clip. Since such a feature representation still has a
high data dimension that leads to nontrivial computational
overhead, [4] proposes to neglect the coefficients of high-
frequency components, which are usually very sparse and
thus have limited exploitable information for LHD. A similar
approach [21] implicitly inclines on the same assumption but
uses FFT for feature extraction and claims that FFT has an
advantage over DCT in that it utilizes both cosine and sine
functions and thus provides a stronger ability to represent
the shapes, whereas DCT only uses cosine functions and
is thus weaker. However, such an assumption that reduc-
ing data dimensionality by narrowing the focus of features
to lower frequency components does not always hold for
advanced technology nodes since they can have very subtle
and abrupt variations in their pattern shapes. Consequently,
this method might inadvertently fail to encode such patterns

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

in the extracted features and thus suffer from accuracy loss. In
conclusion, current feature extraction methods either overlook
potential critical features and thus compromise performance
or fail to achieve optimal computation efficiency.

There are other advances in heterogeneity-aware LHD.
Reference [9] brings attention to the use of the area under
the ROC curve (ROC-AUC) as a more holistic metric for the
highly imbalanced lithography hotspot problem and proposes
a novel loss function for direct ROC-AUC optimization.
Ye et al. [22] aimed to address the reliability of common
ML methods for LHD by introducing Gaussian process
assurance that suggests the confidence of each hotspot
prediction. However, few works have touched on the problem
of developing ML-based lithography hotspot detectors in a
privacy-preserved decentralized setting.

B. Federated Learning

Federated learning allows several computation nodes to
collaboratively construct a shared ML-based model without
exposing a computation node’s training data to any other node
or any third party [20]. Consider a set of N local computation
nodes, called clients, connected to a central server. Each client
only has access to its own local training data and has an
optimization objective F; : R - R, i=1,...,N

1 N
minf(w) = = > Fi(w) (1
i=1

where w denotes the model parameter, and f is the global
optimization objective. FedAvg [20] is a popular federated
learning algorithm that solves the above problem. In FedAvg,
each client sends parameter updates of its locally trained model
to the central server at the end of each training round. The
server then computes the average of the collected parameter
updates and deploys the average update back to all the
clients. FedAvg works well with independent and identically
distributed (IID) datasets but may suffer from significant
performance degradation when applied to non-IID datasets.

III. PROPOSED FRAMEWORK
A. Overview

Fig. 2 demonstrates procedures that are commonly used for
LHD, i.e., local learning in Fig. 2(a) and centralized learning
in Fig. 2(b). In both procedures, feature tensor extraction
and learning are two essential steps. We select these two
procedures as the baseline models of our method for LHD.
In Table I, we define the symbols that will be used in the
remainder of this article.

Here, we introduce the performance metrics of the LHD
models. The accuracy of LHD can be evaluated by the true
positive rate (TPR), the FPR, and the overall accuracy. These
metrics are defined as follows.

Definition 1 (TPR): The proportion of correctly classified
hotspots out of the total number of classified layout hotspots.

Definition 2 (FPR): The proportion of incorrectly classified
layout hotspots (i.e., false alarms) out of the total number of
classified layout hotspots.
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Fig. 2. Two commonly used procedures for LHD. (a) Procedure for local
learning. (b) Procedure for centralized learning.

TABLE I
SYMBOLS USED IN THE PROPOSED FRAMEWORK

Symbol | Definition

w The set of weights of a CNN model
Wy Global weights of the model

wy; Local weights of the i, client model
n Total number of clients
a; The data size of client ¢

Definition 3 (Accuracy): The proportion of correctly classi-
fied hotspots and nonhotspots out of the total number of layout
clips.

With the above definitions, we summarize the formulation
of the heterogeneous federated learning (HFL)-based LHD
problem as follows.

Problem Formulation 1 (HFL-Based LHD): Given n clients
(or design companies) owning unique lithography layouts, the
proposed LHD method aims at gathering the information from
all the clients and hence construct a local submodel for each
client and a global submodel shared by all the clients. In this
way, for each client, the pair of a local submodel and the global
submodel forms a unique hotspot detector that is dedicated to
that client.

The proposed HFL-based LHD method aims to adapt to the
heterogeneity at different perspectives, i.e., data, model, and
algorithm.

1) Data: The distribution of hotspot/nonhotspot lithography

layout patterns can be non-IID.

2) Model: The lithography hotspot detector model includes
a shared global submodel and a unique local submodel.
The local submodel can be different from client to client
during the procedure of local adaptation.

3) Algorithm: Unlike the former federated learning
method [20], our proposed framework can achieve a
good convergence and accuracy when allowing asyn-
chronous updates from the clients.

Fig. 3 presents an overview of the proposed framework

which includes three key operations.
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1) Feature Selection: We propose an efficient feature selec-
tion method which automatically discovers the feature
components that has critical contribution to the LHD
model, thus reducing the redundancy in feature space
and lessen computation overhead.

2) Global Aggregation: We propose that global aggregation
is only performed on the global submodel that is shared
across the clients. In this way, it not only decreases the
training computation cost but also makes heterogeneous
communication more efficient.

3) Local Adaptation: We propose to allow each client to
optimize its local submodel with customized parameters
depending on the heterogeneity or uniqueness of local
lithography layout features. This optimization process is
called local adaptation.

The above three key operations construct an LHD framework
that preserves the data privacy of each client. They allow the
sharing knowledge during training via federated learning and
is able to maintain the balance between model generality and
customization for heterogeneous local lithography features. In
the remaining part of this section, we will give a detailed
illustration of each of the three operations.

B. Feature Selection

As discussed in Section II-A, while DCT-based methods are
able to employ more spatial information than other sampling
methods, they also show risks of introducing redundancy
of extracted feature vectors and thereby cause unnecessary
computational overhead. And to reduce the computational cost,
the vectors are often truncated based on domain knowledge of
lithography or other heuristics [4]. In this article, we propose
a novel feature selection technique that utilizes structured reg-
ularization to penalize unimportant feature components during
model training. Note that by selecting important features, we
are able to further remove the redundancy in the CNN model
design, which helps improve the training convergence in the
federated learning scenario.

Fig. 4 shows the proposed feature selection procedure. First,
the lithography layout clips are viewed as single-channel
images and are transformed into a spectral domain using 2-D
DCT. Second, we employ group LASSO-based regularization
in the model training procedure to penalize feature components
with less contribution [23]. We formulate the optimization
penalized by group LASSO regularization as

c
L(w) = Lp(w) + Rw) + Y _ |Re, (we)| (©)

c=1
where w denotes weights of the CNN-based hotspot detection
model, Lp(w) denotes the cross-entropy loss, R(w) is a general
regularization term, and Ry, (w.) is structured £, regularization
on the cth weight group w,. In particular, in the first convo-
lution layer of a deep CNN model, the parameters of each
convolutional filter can be grouped by channels, each of which
exactly corresponds to a channel in the feature tensor. If we
make the parameters from the cth channels of all the filters a
group, we have ¢ parameter groups in total. And by applying
group LASSO on these groups, the optimization would tend to
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prune less important parameter groups, and thus less important
channels of feature tensors, i.e., frequency components in
the spectral domain in our case. The optimization objective
with the channel-wise group LASSO regularization can be
expressed as

c®

Low) = Lpow) + 2ellwlla + 2c Y| @
c=1

;

where w is the model’s weight, w©® is the weight of the
first convolutional layer, w(c) is the group of the cth
channel of layer w(o), AR is the strength of ¢, regularization,
and AgL is the group LASSO regularization strength. This
regularization reduces the cth feature channel’s impact on
Lp(w) and encourages the £;-norm of w:(,oc),;; to be zero
if it has less significance. The remaining channels become
the most important components, reducing redundancy in the
layout clip feature representation and computational over-
head. It is worth noting that the selected w® for feature
selection is assigned as the global parameters, as shown in
Fig. 3, and thus the selection result is shared among all
clients.

C. Global Aggregation and Local Adaptation

Global aggregation and local adaptation are two essential
operations in our proposed HFL-LA algorithm. Our proposed
HFL-LA is designed for ML-based LHD with exploitation
of lithography domain knowledge, which is summarized as
follows.

1) Though different clients represent different design com-
panies, they contain hotspot patterns that may share a
nontrivial portion of similarity, which indicates the need
for the global submodel that enables knowledge sharing.

2) The total client count may hardly be larger than tens.

3) The lithography layout data at each client may not be
sufficient to successfully train a model with a large local
submodel.

Fig. 3 shows the flow of our proposed HFL-LA which
is similar to conventional federated learning methods, where
a central server aggregates the parameters fetched from the
clients. However, we highlight that, unlike conventional feder-
ated learning methods, in the proposed HFL-LA framework,
the model that each client trains and uses can be split into
global and local submodels. The global submodel is obtained
from the server and shared among all clients to consolidate
common knowledge for LHD, while the local submodel is kept
within the client to adjust to the non-IID local data, which
differs from client to client.

To derive such a model, we define the following objective
function for optimization:

n
VIV?I»IV]] F(wg, wi) = Zl:piFi(ng wi,i) 4)
i=
where wy is the global submodel parameter shared by all the
clients; w; := [wll, e, wfv ] is a matrix whose kth column is the
local submodel parameter for the kth client; N is the number
of clients; px > 0 and ) ;_, px = 1 is the contribution ratio of
each client; and n; is the data size of client i. By default, we
can set py = (nx/n), where a = Z:’: 1 a; is the total number
of samples across all the clients. For the local data at client i,
F;(-) is the local (potentially nonconvex) loss function, which
is defined as
1 &
Fi(wg.wii) = = Y €(wg. wiii xi,) 5)

a
i j=1

where x;; is the jth sample of client i. As shown in
Algorithm 1, in the ¢ round, the central server broadcasts the
latest global submodel parameter wi, to all the clients. Then,
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Algorithm 1 HFL-LA for LHD
Server:

1: Initialize w9, send wg to every client;
2: for each round t=0,1,...,T—1do
3: S; < (Randomly select S clients);
4 for each client i € S; do

5 wZ’il <« ClientUpdate(i, wh);

t+1 a t+1,
Wg <~ = lpl g,

Send wi,“ to every client.

N o

Client:
1: ClientUpdate(i, wy):
2: B «— (Divide Dy according to the batch size of B);
3: for each local update i =0,1--- ,E; — 1
4 for batch & € B do do
5: wii < wii —nViFiwii; §);
6: for each global update i =0,1--- ,E; — 1
7 for batch &; € B do do
8 for batch & € B do
9 we i Uwp; <= weUwp; —nVEi(wg Uwy; &),

10: return wg ; tO server.

each client (e.g., ith client) starts with w’ L wi, ;Uwy; and
conducts E;(> 1) local updates for submodel parameters

E—1

Wit =l Z Vi (w7 6) ©)

where wl */ denote the intermediate variables locally updated
by client i in the ¢ round; Wz ;= Wz, i & are the samples
uniformly chosen from the local data in the 7 round of training.
After that, the global and local submodel parameters at client
i become w;;(lll/ S oY ;Jlr(l/ 2 and are then updated by E,
steps of inner gradlent descent as follows:

Eg—1

— Z VF( K s,-’) )

denote the intermediate variables updated by

g+l
client i in the 7 + (1/2) round, wt-:(lll/ D _ wt+(1/ 2 Finally,

the client sends the global submodel parameters back to the
server, which then aggregates the global submodel parameters

of all the clients, ie., w' witl to generate the new
+1

t+
Wﬁ“ = Wi

where wt+(1/ et

gl Wens
global submodel, w’"
This figure displays the network architecture of each client
involved in the experiment. The network has two convolution
stages which are followed by two fully connected stages,
with each stage featuring two convolution layers, a rectified
linear unit (ReLU) layer, and a max-pooling layer. The second
fully connected layer serves as the output layer, with its
outputs representing the predicted probabilities of hotspot
and nonhotspot. It is also worth mentioning that the CNN-
based model architecture shown in Fig. 5 is only one example
for the target application, and the proposed framework can
accommodate different CNN architectures in principle.
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Fig. 5. Example of a CNN model in our framework.

D. Communication Heterogeneity

Our framework accommodates for communication hetero-
geneity, meaning that clients can perform synchronized or
asynchronous updates while still ensuring good convergence.
In the case of synchronized updates, for each round, all clients
participate in each global aggregation as

I+1 Zpl l+1. (8)

The round completes when the last client finishes its update
process. In a practical scenario, however, each client’s compu-
tational cost and schedule to participate in an update can vary
greatly. Thus, it is more realistic to assume an asynchronous
scenario where different clients will update at different rates.
In this scenario, the central server can collect outputs from
the first S clients that respond, with 1 < § < n, and stop
waiting for the remaining (S + 1)th to the nth clients. The set
of indices for the first S clients in the #-th round is represented
as S:(ISy] = S), and the global aggregation process can be

rewritten as
t+ 1 Z t+1
piw 9

leS,

where ag is the sum of the sample data volume of the first §
clients and (a/as) 3 ;cs, pi = 1.

IV. CONVERGENCE ANALYSIS

In this section, we study the convergence of the proposed
HFL-LA algorithm. Unlike the conventional federated learn-
ing, our proposed HFL-LA algorithm for LHD works with
fewer clients, smaller data volume, and non-IID datasets,
making the convergence analysis more challenging. Before
proceeding into the main convergence result, we provide the
following widely used assumptions on the local cost functions
{Ft} and stochastic gradients [24].

Assumption 1 (Smoothness): BEach Fi(wg, w; ;) is L-smooth
in (wg, wy;) € RPT4

Assumption 2 (Bounded Variance): For Yo, € R and
Yo € R% there exist 012, ag2 > 0 such that

E[”vlFi(Wg’ wiit §) = VIFi(wg, wi,i) Hz] <of

E[”ngi(Wg’ wi,i; §) — VgFi(wg, wii) “2] = ng'

Assumption 3 (Bounded Gradient): For Yo, € RP and
VYo, ; € R%, there exist Dlz, D§ > 0 such that

|91 (wg wn) |* < D [ VeFi(we. wii)|” < D
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TABLE I
ICCAD AND INDUSTRY BENCHMARK DETAILS
. . Training Set Testing Set
m2

Benchmarks | Size/Clip (um?) ‘ HS# ‘ non-HS# ‘ HS# ‘ non-HS#

ICCAD 3.6 X 3.6 1204 17096 | 2524 13503
Industry 1.2x1.2 3629 | 80299 942 20412

With the above assumptions, we are ready to present the
following main results of the convergence of the proposed
algorithm. The detailed proof can be found in the Appendix.

Lemma 1 (Consensus Error): Suppose Assumptions 1-3
hold. Then, we have for all k > 0

2
E[Hw’g—m’ég” :|§nn2(Eg— 1)2(D§+a§). (10)

Theorem 1: Suppose Assumptions 1-3 hold. Let the step
size satisfy n < 1/L, we have for all T > 0

T
1 lE VF 1—1“[ IT. ék 2
T+1 n Yoo Wi
t=0
2(F(#9. w0) — F*)
<

< o
+ 201 (E, — 1) (D} + 07).

2
nEgLo,

+ T)'ELUIZ +

(1)

Remark 1: The above lemma guarantees that the global
submodel parameters of all the clients reach consensus with
an error proportional to the learning rate . Besides, the above
theorem further shows that, with a constant step size, the
parameters of all clients converge to the n-neighborhood of
a stationary point with a rate of O(1/T). It should be noted
that the second term of the steady-state error will vanish when
E, = 1. This theorem sheds light on the relationship between
design parameters and convergence performance, which helps
guide the design of the proposed HFL-LA algorithm.

V. EXPERIMENTAL RESULTS

The proposed framework is implemented based on the
PyTorch library [25]. In our experiments, we use the following
hyperparameters to guide the training process of the CNN-
based model on each client. We optimize our models with
the Adam optimizer for 7 = 50 rounds. We select a learning
rate n = 0.001, a batch size of 64, and L2 regularization
strength of 0.00001. Furthermore, in each round, we perform
local updates for E; = 500 iterations, and global updates
for E; = 1500 iterations. Two distinct benchmarks (ICCAD
and Industry) are used in our experiments to train and
evaluate our framework. The test cases published in ICCAD
2012 contest [26] contain lithography patterns of the 28-nm
technology node. We combined all these patterns into a merged
benchmark, denoted by ICCAD, and obtained the Industry
benchmark using layout data at a 20-nm technology node
from our industrial partner. Table II provides details on the
benchmarks, including the size of the training and testing sets
and the layout clip size. The columns labeled “HS#” and “non-
HS#” show the total number of hotspots and nonhotspots,
respectively. The benchmark is divided at random into separate
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Grouped £-Norm of the First Convolutional Layer

0.2

A
S0l
0.0
0 5 10 15 20 25 30
DCT-encoded Feature Channel Number
Fig. 6.  Grouped ¢>-norm of the first convolution layer is presented. The

range of the DCT-encoded channel number is from O to 31, with channel 0
representing the dc component of the spectral domain data and channels 1-31
representing the ac components in increasing frequency.

portions, with each client being allocated one distinct portion.
Specifically, we ensure the size of each portion is uniformly
distributed and the maximum size can be four times as large as
the smallest one. This data partitioning strategy introduces a
nuanced balance between flexibility and consistency, fostering
a heterogeneous data distribution that mirrors real-world sce-
narios, thus enhancing the applicability and adaptability of our
experiments. Given the limited access to public lithography
data and intellectual property concerns from companies, it
is our best effort to simulate data heterogeneity. This is
achieved by adjusting quantities, clip sizes, and symbolizing
distinct tech nodes of the lithography layout clips. Despite
these constraints, our existing framework successfully mirrors
a typical level of data heterogeneity often found in real-world
scenarios.

One minor issue about the data is that the sizes of the orig-
inal layout clips from ICCAD and Industry are different.
In order to achieve consistent clip sizes, the layout clips in
the TCCAD benchmark are divided into nine blocks, ensuring
that the size is consistent with the Industry benchmark.
However, it is important to note that the two benchmarks
have different feature representations due to differences in
technology and design patterns. The Industry benchmark,
in particular, has a higher degree of data heterogeneity with
more diverse design patterns.

A. Feature Selection

This section presents the evaluation of the proposed feature
selection method. As described in Section III-B, the £7-norm
of the channel-wise groups in the first convolutional layer is
related to the impact of the corresponding feature channels
on model performance, as shown in Fig. 6. Fig. 6 intuitively
proves the concept that different frequency components in the
feature space have very different contributions to the model
in terms of their weights during model inference. The feature
channels were then sorted by their £>-norm and the model
was retrained with only the top-c channels, where ¢ = 26 in
our experiment. To validate the effectiveness of the feature
selection method, the performance of HFL-LA was tested with
different numbers of features representing the layout clips and
compared on the validation set. Fig. 6 demonstrates that HFL-
LA achieves comparable or even higher accuracy with ¢ =
26 features as suggested by the proposed selection method
for both benchmarks, which represents a 18.75% reduction of
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TABLE III
INFERENCE PERFORMANCE (TPR, FPR, AND ACCURACY) COMPARISON AMONG HFL-LA, FEDAVG, FEDPROX, LOCAL, AND CENTRAL LEARNING
WITH STANDARD DEVIATION INCLUDED. ALL EXPERIMENTS ARE REPEATED FIVE TIMES WITH DIFFERENT RANDOM SEEDS

Method Number of ICCAD Industry

cthods clients TPR FPR ACC TPR FPR ACC
2 clients | 0.96140.008 0.020+0.005 0.98140.007 | 0.967+0.009 0.041+0.006 0.965+0.008
HFL-LA | 4 clients | 0.96840.006 0.022-£0.004 0.980+0.006 | 0.976+0.006 0.050+0.005 0.969+0.006
10 clients | 0.968+0.004 0.03140.003 0.971+0.004 | 0.972+0.004 0.05140.003 0.966--0.004
2 clients | 0.97540.012 0.111+0.015 0.89340.013 | 0.81540.014 0.011+£0.008 0.87040.012
FedAvg 4 clients | 0.97240.010  0.102£0.012  0.902+0.010 | 0.884+0.011 0.017+0.007 0.915+0.010
10 clients | 0.970+0.006 0.0910.008 0.912+0.006 | 0.882+0.007 0.017+0.004 0.914+0.006
2 clients | 0.97840.015 0.135+0.018 0.86940.016 | 0.85540.017 0.015+0.010 0.896+0.015
FedProx | 4 clients | 0.974+0.013 0.12240.015 0.881-£0.014 | 0.860-0.014 0.018+0.009 0.899-+0.013
10 clients | 0.95940.007 0.114+0.008 0.88940.007 | 0.84440.008 0.017-£0.005 0.888+0.007
2 clients | 0.97440.006 0.022+0.004 0.97940.006 | 0.97740.006 0.040+0.004 0.97240.006
Local 4 clients | 0.96740.005 0.022£0.005 0.979+0.007 | 0.97240.007 0.072-£0.006  0.958+0.007
10 clients | 0.926+0.005 0.02540.004 0.976+0.005 | 0.955+0.005 0.12440.004 0.931+0.004
Centralized | 1 server | 0.957+0.010 0.033+£0.008 0.969+0.009 | 0.975+£0.010 0.039+0.007 ~0.97140.009
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Fig. 7. Accuracy of HFL-LA on the validation set using a different number
of selected features representing the layout clip.

computational cost for the subsequent learning compared to
the original 32 features.

We also analyze the contribution of feature selection in our
HFL-LA framework. Fig. 7 shows the validation accuracy of
HFL-LA when the model is trained with a different number
of selected features representing the layout clips. When no
feature selection is performed and all the 32 features are
used for training, HFL-LA reports validation accuracy of
98% on the ICCAD dataset and 96% on the Industry
dataset. And when we select the top-¢c (¢ > 6) features,
for the TCCAD dataset, the HFL-LA framework achieves a
comparable accuracy of 97% when ¢ = 20, and even when
¢ = 6, the accuracy is still 95% with a mere 3% drop. For
the Industry dataset, we show that the most important
six features provide enough information to achieve the same
accuracy as the total 32 features. This result shown in Fig. 7
proves the existence of unnecessary computation overhead
in the ML model development with the DCT-based feature
extraction method.

B. Heterogeneous Federated Learning With Local Adaptation

To evaluate the effectiveness of the proposed HFL-LA
algorithm, we compare its results with the state-of-the-art
federated learning algorithms FedAvg and FedProx, as well
as with local and central learning methods, which were

described in [4], [19], and [20]. The following summarizes the
algorithms compared.

1) FedAvg: A conventional federated learning algorithm
that averages the uploaded models [20].

2) FedProx: A federated learning algorithm that han-
dles heterogeneity by adding a proximal term to the
objective [19].

3) Local Learning (Denoted as “Local”): A learning
method that only uses the local data of each client [4].

4) Central Learning (Denoted as “Centralized”): A learn-
ing approach that trains a unified model using all
available training sets [4].

In this experiment, the merged training sets of the ICCAD
and Industry benchmarks were divided and assigned to
different client numbers (2, 4, and 10) as their local data.
The testing sets, as shown in Table II, were kept separate
and used to evaluate the performance of the trained models.
The algorithms were compared based on their TPR, FPR, and
accuracy. Table III summarizes the results. For each experi-
ment, we collect results from five parallel runs with different
random seeds for model parameter initialization and report the
average and standard deviation. All clients communicated with
the server following a synchronized schedule, and the average
performance across all clients in the three scenarios (2, 4,
and 10 clients) was calculated. The best performance in each
scenario is marked in bold. The proposed HFL-LA algorithm
showed an improvement of 7%—11% in accuracy for TPR
and FPR compared to FedAvg and FedProx. Although local
learning, which only uses homogeneous local data, performed
slightly better on the ICCAD benchmark, its performance
quickly dropped when the data heterogeneity increased, as
seen in the Industry benchmark, yielding a degradation of
around 4% compared to HFL-LA.

We also compare the results when the model updates are

done asynchronously for 4 and 10 client scenarios, where
half of the clients are randomly selected for training and
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Fig. 8. Accuracy comparison among HFL-LA, FedAvg, and FedProx on
ICCAD and Industry with 4 and 10 clients using asynchronous model
updates. (a) Accuracy on ICCAD and Industry with four clients. (b) Accuracy
on ICCAD and Industry with ten clients.

updating in each round. It is pivotal to underscore that only
federated learning techniques mandate these model updates.
Hence, our comparison predominantly zeroes in on HFL-LA
versus the FedAvg and FedProx methods. As illustrated in
Fig. 8, the HFL-LA method shines brightly, even in the face
of inconsistent communication and variegated updates. When
pitted against other federated learning techniques, HFL-LA
showcases a marked performance enhancement, with accuracy
figures rising by a notable 5%-10%. This robustness and
superior performance firmly position HFL-LA as a preferred
choice when considering federated learning approaches.

Finally, we compare the accuracy of different methods
with both synchronous (denoted as sync) and asynchronous
(denoted as async) update mechanisms for ten clients. For
the ICCAD benchmark, as shown in Fig. 9(a), our HFL-LA
method achieves the highest accuracy and converges much
faster than the other methods in the scenario of synchronous
updates. The convergence rate of HFL-LA is even comparable
to local learning. Even with asynchronous updates, the HFL-
LA method can still achieve a convergence rate and accuracy
that are similar to those in the synchronous update scenario.
As for the Industry benchmark, as shown in Fig. 9(b),
the HFL-LA method also outperforms all the other methods
in terms of accuracy (e.g., improvement of 3.7% over local
learning). Furthermore, the HFL-LA method even reaches
around 5x convergence speedup compared with the other
federated learning methods, like FedAvg and FedProx, even
adopting asynchronous updates.

C. Choice of Personalization Adaptation Layers

We further explore the effectiveness of the HFL-LA algo-
rithm when using different CNN model layers as local

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Accuracy on ICCAD

1.0 . _
- = i : -
1 -
0.9 1 NG\ S T S N s —~—— ~—~-
Sk AR A G R TR e
Y PRIy LAV Wy WY ST U S
0.8 1 .II. T A A e
& | "'...'A A === HFL-LA (sync)
£ 074 [ | ~A&- HFL-LA (async)
z | K —-= TFedAvg (sync)
0.6 —& - FedAvg (async)
B I 1 FedProx (sync)
<A FedProx (async)
059 ’ : —— Local
l‘.: — Centralized
0.4 T T T T T T
0 10 20 30 40 50
#Rounds
()
Accuracy on Industry
1.0
0.9 1
0.8 1
& === HFL-LA (sync)
£ 074 ~A- HFL-LA (async)
E —-= FedAvg (sync)
0.6 —#& - FedAvg (async)
R FedProx (sync)
A FedProx (async)
059 = Local
—— Centralized
0.4 T T T T T T
0 10 20 30 40 50
#Rounds
(b)

Fig. 9. Comparison of convergence between various methods during training,
where model evaluation is performed on the testing sets for ICCAD and
Industry. (a) Accuracy on ICCAD testing set. (b) Accuracy on Industry
testing set.

parameters. As shown in Fig. 5, our CNN model has a total
of four convolutional layers and two fully connected layers.
Starting from the first convolutional layer, we number all the
layers of the CNN model as {1, 2, 3, 4, 5, 6}. We consider that
the local parameters should be the classifier layer (the final
fully connected layer). Since we describe local parameters in
units of CNN model layers, with a slight abuse of notation,
we can use A; to denote the CNN model layers included in
the local parameters. A; € {1} refers to the first convolutional
layer as the local parameters. A; € {2, 3, 4, 5} refers to the final
fully connected layer as the local parameters. A; € {6} refers
to using the layers in the middle of the CNN model as the
local parameters. Fig. 10 plots test accuracies (averaged across
clients) comparison among A; € {1}, A; € {2,3,4,5},and A; €
{6} on ICCAD and Industry with 4 and 10 clients using
synchronous and asynchronous model update. Interestingly,
there seem to be a clear correlation between A; and the client
averaged test accuracy at steady state. HFL-LA has the highest
accuracy with A; € {6}, achieving 1% accuracy improvement
from that of the other methods. As shown in Table II, the label
distributions of ICCAD and Industry datasets are highly
heterogeneous, so it is most reasonable to choose the final
fully connected layer as the local parameter. As shown in the
experimental results, even though the parameter scale of the
final fully connected layer is only 0.68% of the parameter scale
of the entire CNN model layers, it achieves the best accuracy.
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Fig. 10. Accuracy comparison among A; € {1}, A; € {2,3,4,5}, and A; €
{6} on ICCAD and Industry with 4 and 10 clients using synchronous
and asynchronous update. (a) Accuracy using synchronous model updates.
(b) Accuracy using asynchronous model updates.
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Fig. 11. CNN model corresponding to Industry. This model differs from
the one shown in Fig. 5 in that it shows a different configuration of the local
parameters.

D. CNN Model Heterogeneity

While it is accurate that the optimal CNN architecture
can vary based on the characteristics of different datasets, a
homogeneous architecture requirement in a federated learning
environment can indeed limit individual performance. To
address this, in our HFL-LA approach, we entertain the
possibility of customizing CNN architectures for individual
datasets.

For the Industry dataset, characterized by its complex
feature expression, we enhanced the basic CNN model by
adding an extra fully connected layer to the architecture
depicted in Fig. 5. The modified architecture, specifically
tailored for the Industry dataset, is illustrated in Fig. 11.
Upon the aggregation of global submodel parameters, the
server disseminates this information to all clients. Each client
then proceeds to train its local submodel parameters using
its private dataset. This creates a collaborative training envi-
ronment where each model retains its unique architecture
while benefiting from the shared insights. This leads to
rapid model improvements, surpassing traditional federated
learning baselines. Our experimental results, as displayed in
Table IV, confirm this approach’s efficacy. The customized
models achieved test accuracies of approximately 97.5% on
the TCCAD dataset and 96.2% on the Industry dataset.

1493

TABLE IV
COMPARISON OF ACCURACY FOR HFL-LA AND FEDAVG [20]. EACH
ENTRY PROVIDES THE AVERAGE VALUE ACCOMPANIED BY THE
STANDARD DEVIATION (AVG£STD). ALL EXPERIMENTS ARE
REPEATED FIVE TIMES WITH DIFFERENT RANDOM SEEDS

Number of ICCAD Industry
clients FedAvg HFL-LA FedAvg HFL-LA
4 (sync) | 0.902+0.018 0.980+0.014 | 0.914+0.013  0.964+0.012
10 (sync) | 0.9084+0.006 0.968+0.006 | 0.913+0.004 0.960+0.003
4 (async) | 0.878+0.021 0.977+0.010 | 0.892+0.017  0.959+0.008
10 (async) | 0.892+0.009 0.973+0.005 | 0.882+0.006 0.963+0.003
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Fig. 12. Local accuracy of models trained on clients of different sizes.
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Fig. 13.  Accuracy of HFL-LA on the validation set with different number

of clients in the training set.

This approach can be extended to further improve
performance. For instance, clients could use additional layers,
alternative activation functions, or different types of layers
(such as convolutional, pooling, or normalization layers) based
on the specific characteristics of their datasets.

E. Performance on Different Sizes of Clients

We also explore the performance of HFL-LA when the
size of each local client varies. Figs. 12 and 13 show the
HFL-LA accuracy and local accuracy on different splitting of
the TCCAD dataset and Industry dataset, respectively. Note
that the size of each client’s data is inversely proportional to
the number of clients split from either dataset. When either of
the two datasets is split into ten clients, the HFL-LA accuracy
is 97% on ICCAD and 96% on Industry, while the local
accuracy is 97% on ICCAD and 91% on Industry. When
the number of clients split from either dataset increases to
25, local accuracy on Industry decreases significantly to
87%, which is a 4.4% drop. On the other hand, the HFL-
LA accuracy merely decreases from 96% to 95%, which is
only a 1% drop. This result shows that when the data on
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each client is insufficient for successful local training, HFL-
LA can utilize information gathered from decentralized clients
and thus outperform local training.

VI. CONCLUSION

We have proposed a new hotspot detection framework that
uses HFL-LA. The framework takes advantage of an efficient
feature selection method and domain expertise of LHD to
handle heterogeneity in data, model, and communication.
Experimental results demonstrate that our framework sur-
passes other methods in terms of performance and has better
convergence compared to other federated learning methods,
even when datasets are highly heterogeneous.

APPENDIX

In this section, we prove the lemmas and the theorem
mentioned above. For brevity, we only consider the case
where the number of sampled clients S = n. However, the
techniques used to prove the main results can be extended
to other cases with different updating strategies on the
global and local model parameters. We use the following
notations:

Gl(wg,wf; Sk) = [ V1F< gl,wfi;é‘ik),...]T

T
Go(whowhs65) s= [ ViFi(wh o of 5. . ]
1T
ok = —wg, T=E+E, m=|[(k—1)/7]

where k denotes the count of overall iterations, and m denotes
the number of global communications before k. Then, we can
rewrite the proposed HFL-LA algorithm as follows:

é“H = oy —nGz(w wf §k>
w§+1=Wk —othg<w wl Ek)

where

wko— [ 3. if mod(k. E; + E;) =0
I, else

_ | n ifmod(k,E, +Eg) > E
o =
0, else.

A. Supporting Lemmas
We first provide the proof for Lemma 1 which bounds the
k
= Wi =) (a){;—l - 1@"—1)
= [T Wieies = (g™ — 107

consensus error in expectation.
1ok
w lwg
— k(Wi = DG (W,
ar(Wi—1 =)
s=0

Proof: By the above-rewritten algorithm, we have
8
wh=1. Skfl)
k—1—mt
mt k—1—t
- at< [1 (Wk_l_s—J))Gg(w;,wﬁ;s’)
t=k—1 5=0
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mt+E;

= =1 Y A= DGy (vl wis€')

t=k—1

(12)

where m = |[(k — 1)/t ] and 1 = E; + E,. By the definitions
of ay, Wk and Assumptions 2 and 3, we get

E[Hw’; — 1 Hz] < (B —1)’n(D2+02)  (3)

which completes the proof. |
Lemma 2: Suppose Assumptions 1-3 hold. Let the step size
satisfy n < 1/L. Then, we have for all k > 0

)
< B[F(#h )] + %E[Hw’; — 1 Hz]

- el lou(o5t D ] - el )

nzLal OlkL(Tg
2 2n

Proof: Since each F; is L-smooth, we have
(5ot = (5o
k — k1 k1 _ ko k
et o) ()

2L |17 2
LR S PRl

15)
Then, we bound the inner product in the above inequality.
Noticing that

<VF ( W;(l), (V_V§+1 Wﬁ_l) (V_Vk’ Wﬁ")>
(B (5 ) ot )
T <V1F (w wf l), nV,F; ( We is Wﬁﬁ gzk)>

by the smoothness of F;, we can then obtain

E[<V F( wf‘l),aleGg<w§,w];;§k>>:|

(14)

(16)

-3l ol o)
- e [nrtot)- DRLIC

. ?<E[ veri(hot)| +E[H17Gg<wﬁ’w§> D
s vt - 154 an

and

i) ot )]
- nE[<V1F (w w,,),VzF( gnwfz')ﬂ
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By Assumptions 2 and 3 and summing over i, we obtain
E[F(v—vlgﬂ 1;+1>]
< B[F(#%wf) ] + “EPE Rt 1]
-5 (el Jer(m2)[])
(et

(15
+ ME[\)Gg(lwg, )]
+

2n

2 27 2 27 2
n L—r) P k 2 n Lo‘l OlkLO'g
o Bl e )]

n e )| |+ 0

Let the step size satisfy n < 1/L, we complete the proof.

B. Proof of Theorem 1

Proof: Invoking Lemmas 1 and 2, we get

1 K-1 0 5
(5 s (15 ) || + ] len(aet )]
t:O
F(ﬁ/O,WO) —F 2L 2 2E LO’2
- gl n-Lo n-Lglo,
- K 2 2nt
L2 K—-1 2
+ E[ng—mg }
n
=0
F(#9 w)) — F* 272 .2 2
Wes Wi n°Lo n“EqLo,
+ l 8="g
- K 2 2nt

Letting T be the number of performing global consensus such

that Tt < K < (T + 1), we get

e (2 ooz ])
j 2(F (39, W) - )

< Tn
+ 200’12 (B, — 1)} (D2 + o)

nEgLog2

+ ntLlof +

which completes the proof.
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