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Chapter 2 ®
Deep Learning for Routability ke

Zhiyao Xie, Jingyu Pan, Chen-Chia Chang, Rongjian Liang,
Erick Carvajal Barboza, and Yiran Chen

2.1 Introduction

With the advance of semiconductor technology, an increasing number of compli-
cated design rules need to be followed in VLSI design, and a chip can only be
taped-out after passing the design rule checking (DRC). This basic requirement is
often difficult to be satisfied in modern chip design, especially when routability is
not adequately considered in early design stages. In light of this fact, routability
is widely recognized as a main objective in placement, and routability prediction
has received considerable attention in both academic research and industrial tool
development. Routability prediction at early design stages can help designers and
tools perform preventive measures so that design rule violations can be avoided in a
proactive manner.

In some industrial design flows, fast trial global routing is often employed for
overall routability prediction at the placement stage. However, this is still too slow
from the routability prediction point of view, as it needs to be invoked many times
in the placement process. In comparison, even the full-fledged global routing is not
accurate enough to identify precise locations of DRC hotspots, due to complicated
design rules imposed upon design layout for manufacturing. Overall, existing
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routing-based solutions are neither fast enough for overall routability forecast nor
accurate enough for pinpointing DRC hotspots.

In recent years, machine learning (ML), especially deep learning (DL), has
been demonstrated as a powerful technique in many fields. In VLSI design,
many DL-based routability estimators have achieved promising results. Unlike
traditional algorithms, these data-driven techniques avoid constructing solutions
from scratch and achieve orders-of-magnitude acceleration by directly learning
complex correlations from prior data. Compared with traditional ML methods, DL-
based methods are superior in capturing the global information from a larger region
of the circuit layout. In this chapter, we will cover DL-based routability estimators in
detail, from the background to the latest research efforts, with more focus on feature
engineering and DL model architecture design. In addition, we will also cover
existing explorations on the efficient deployment of these routability estimators in
the physical design flow to benefit the final chip quality.

2.2 Background on DL for Routability

2.2.1 Routability Prediction Background
2.2.1.1 Design Rule Checking (DRC) Violations

In practice, layout routability may be evaluated with different metrics. The most
accurate, ultimate, and widely adopted measurement of routability is design rule
violation (DRV). DRC verifies whether a specific layout meets the constraints
derived according to manufacturing process requirements. Such checking of design
rules is an essential part of physical design flows. Although design rules cannot
guarantee success for manufacturing a design, their violations definitely make the
manufacturing more difficult and increase the failure rate.

Design rules are provided by process engineers and/or fabrication facilities.
Each process technology has its own set of rules, commonly defined in a DRC
rule deck file. The number and complexity of DRC rules increase as the transistor
feature size shrinks at advanced technology nodes. As a result, routability prediction
for different technology nodes may require essentially different methods and ML
models. Some basic and common types of DRC rules include minimum width,
minimum spacing, minimum area, wide metal jog, misaligned via wire, special
notch spacing, end of line spacing, etc. Most design rules can be broadly categorized
into three types:

* Size rules. They define the minimum length or width of components/shapes in a
layout.

» Separation rules. They define the minimum distance between two adjacent
objects at each layer.
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* Opverlap/enclosure rules. They define the minimum amount of overlap/coverage
between two connected shapes in two adjacent layers.

Background Information

DRC violation (DRV) can be accurately evaluated based on rule decks after
routing, using physical verification sign-off tools. Widely used commercial
tools include Siemens EDA (formerly Mentor Graphics) Calibre®, Cadence
Pegasus™ and PVS, Synopsys IC Validator™, etc. Before the sign-off
stage, some digital layout tools like Cadence Innovus™ and Synopsys IC
Compiler™ II also provide quick design rule checking after routing. These
tools can mark the precise locations with DRV and return the total number of
DRVs in the whole layout.

2.2.1.2 Routing Congestion and Pin Accessibility

Although DRC violation is the ultimate optimization goal, it is not the only metric
to measure routability. In practice, routability is also approximated with the routing
congestion at early design stages like global routing. For each region on the layout,
congestion measures the gap between the demand of routing resources and the
supply. This measurement is based on the routing model. In a basic routing model,
the entire layout is tessellated into an array of global routing cells (gcells), also
referred to as grids or bins. They are further gridded using horizontal and vertical
gridlines, referred to as routing tracks, along which wires can be created. Each
gcell can only accommodate only a finite number of routing tracks, and the number
of available tracks is referred to as its routing supply or capacity. In comparison,
the routing demand is contributed by each wire crossing the gcell, requiring one
routing track in either horizontal or vertical direction. The congestion of each gcell
is measured by the number of excess tracks in routing demands over the supply,
referred to as track overflow. Such overflow for horizontal and vertical tracks is
calculated separately and is set to zero if supply is larger or equal to demand. Routers
also report the overall percent of gcells with overflow in an entire layout, as an
indicator of the overall congestion. The existence of routing congestion often results
in detoured wires, poor layer assignment, or even incomplete routes containing
opens and shorts. It is viewed as one major contributor to DRC violations.

Compared with DRC violation, routing congestion is much easier to estimate
based on placement and routing solutions. In some industrial tools, routing conges-
tion can be measured during global routing (GR), or even at early global routing
(eGR), also named trial routing (TR). Thus, it is commonly used as an early
measurement of layout routability, and many traditional routability improvement
techniques are based on it. However, many studies [5] have demonstrated the mis-
correlation between routing congestion and DRC violations, especially at advanced
technology nodes when the complexity of design rules increases. This also makes
routability improvement increasingly difficult.
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Fig. 2.1 Pin accessibility example: the detailed routing around pins in a standard cell [9]

At advanced technology nodes like sub-20nm, as design rules keep increasing,
pin accessibility becomes another key contributor to DRC violations. As Fig. 2.1
demonstrates, the problem arises from the difficulty to route to standard cell pins
on low-level metal layers, even when the routing congestion is low. At an advanced
node, even a standard cell designed for easy pin access may not be easily routable
if surrounded by other cells, which restrict wire access to its pins. As indicated in
previous works [30], the pin access problem is partially contributed by high pin
densities in a local region, but they are not strictly correlated.

2.2.1.3 Relevant Physical Design Steps

Now, we inspect the routability problem in a design flow, which typically starts
with a design in register-transfer level (RTL). After logic synthesis tools convert
design RTL into a gate-level netlist, physical design is performed, where all design
components, including macros, cells, and wires, are instantiated with concrete
geometric representations on metal layers. Routability problems and the majority of
routability estimations arise at this stage. A typical physical design flow consists of
several major steps, including floorplanning, power planning, placement, clock tree
synthesis (CTS), routing, and physical verification. Each physical design step may
involve multiple sub-steps. For example, placement includes global placement (GP)
and detailed placement (DP). Routing includes global routing (GR) and detailed
routing (DR). In addition, optimizations are performed after major steps including
placement, CTS, and routing.

Background Information

All routing blockages and different types of wires, including power grids,
clock wires, and signal nets, all share the common area resource in a layout.
Thus, decisions at many layout steps directly affect routability, and there exist
multiple trade-offs between routability and other design objectives. During
floorplanning, a higher utilization rate for smaller area directly leads to less
routing spaces and worse routability. During power planning, if more routing
resources are devoted to power grids, the design suffers less from IR drop

(continued)
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violations but results in worse routability. During CTS, a clock tree can
achieve better skew and clock tree capacitance with wire sizing but requires
more space and often leads to additional DRC violations. Lastly, if routability
is not considered and optimized during floorplanning and placement, the
layout may achieve better wirelength, timing, and power, at the cost of
more DRC violations. In summary, improving routability is not a stand-
alone design problem. Better routability not only helps secure DRC clean
at physical verification but also allows trade-offs for improvement on other
design objectives according to specific design goals.

2.2.1.4 Routability Prediction

As mentioned, DRC violations can only be precisely measured after routing finishes,
when the room for fixing DRV has become very limited. Besides fixing DRV
manually, one option is to perform engineering changing order (ECO), which tries
to complete unrouted and partially routed nets while maintaining existing wires as
much as possible. Another fixing method is to delete part of existing wires and
reroute them. But it is difficult for these minor modifications at the post-routing
stage to fix all violations for layouts with poor routability. As a result, designers
have to trace back to earlier stages, change their layout solution accordingly, and
start a new design iteration. It can take many iterations to reach a DRV-clean layout,
leading to a very long turnaround time.

To improve layout routability, design rule violations should be avoided with
preventive measures in a proactive manner. This heavily relies on early routability
prediction methods. However, accurate early routability prediction is difficult since
the behavior of placement and routing engines in modern EDA tools is highly
complex and rather unpredictable. One possible solution is to develop some fast
trial routing algorithms, but it is hard to achieve ideal accuracy and speed at the
same time. Another promising research direction nowadays is to learn from prior
data by developing data-driven routability estimators with machine learning (ML)
algorithms. A main strength of ML methods is the automatic extraction of complex
correlations between separated design steps based on prior knowledge. Once the
ML model has been trained, it can produce routability predictions in a very short
time, without constructing solutions from scratch.

For routability prediction, researchers have tried different prediction granularities
according to their application scenarios. Figure 2.2 shows two common routability
prediction scenarios with different granularities. Some coarse-grained predictions
only evaluate the overall routability of an entire layout. Such routability is usually
measured with the total number of DRC violations, also named DRV count.
Generally, it is easier to achieve DRV clean for layouts with less DRVs. Another
similar metric is the total number of nets with DRC violations, also named violated
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Fig. 2.2 Two common routability prediction scenarios. (a) Use coarse-grained prediction on the
overall routability of an entire layout to identify more routable layouts among candidates. (b) Use
fine-grained prediction on detailed DRV locations to guide mitigation techniques

net count. Since the same net may cause multiple DRC violations, using violated net
count instead of DRV count avoids counting the same problem repeatedly. Such a
coarse-grained prediction evaluates the whole layout and enables the identification
of more routable layout solutions among many candidates. In comparison, fine-
grained routability prediction tries to pinpoint the detailed locations with DRC
violations. This guides layout modifications at early stages to proactively prevent
DRC violations. Based on these predictions, many different applications of routabil-
ity estimators have been proposed.

2.2.2 DL Techniques in Routability Prediction

The most commonly adopted DL techniques in routability prediction are from
computer vision, including convolutional neural networks (CNN) and fully con-
volutional network (FCN) [17]. The basic idea is to process the layout input like
processing an image for image classification, segmentation, and generation. There
are many variations for each DL technique. For CNN models in routability pre-
diction, popular models include ResNet [10], DilatedNet [28], and DeepLabv3 [8].
For FCN models, popular models include the vanilla FCN model [17] and the U-
Net model [23]. In addition, some prior works train their FCN-based model with a
conditional generative adversarial network (cGAN) [19] framework.

2.2.2.1 CNN Methods

Compared with traditional machine learning algorithms, CNN learns more abstract
patterns from images. A typical structure of CNN is composed of convolutional
(Conv) layers, pooling (Pool) layers, and fully connected (FC) layers. The final
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output is a single vector of class scores, whose length equals the number of
classes. The ResNet [10] model is a classical variant of CNN model proposed in
2015. It takes advantage of scalable residual blocks to allow skipping layers. As
a result, it well solved the gradient vanishing problem when the depth of CNN
increases. Besides the standard convolution, another widely adopted convolution
is named atrous or dilated convolution (DC) [28]. It introduces another parameter
to convolutional layers called the dilation rate, which defines a spacing between the
values in a kernel. A 3 x 3 kernel with a dilation rate of 2 will have the same field
of view as a 5 x 5 kernel, while only using 9 parameters. Compared with basic
convolution, it can effectively enlarge receptive fields of filters.

2.2.2.2 FCN Methods

Compared with traditional CNN targeting image classification, the FCN, a CNN
variant without FC layers, is firstly proposed to perform end-to-end semantic
segmentation. Given an arbitrary input size, it can output an image with its size
equal to the input. Many FCNs [17] adopt an encoder-decoder framework. In the
encoder, by downsampling operators, the depth and spatial dimensions of the feature
map gradually get deeper and smaller. In the decoder, the width and height of the
feature map are gradually recovered to those of the input by upsampling operators.
Transposed-convolutional (Trans) layers are usually added at the decoder part to
upsample feature maps and control the size of the final output. Such architecture is
widely used in many computer vision problems, like crowd counting and biomedical
image segmentation. Besides eliminating FC layers, many FCNs have multiple
shortcuts, which concatenate feature maps in the front directly to feature maps near
the end. A popular example is U-Net [23] for medical image segmentation. As a
result, both longer and shorter paths exist between the input layer and the final
output layer. Such multipath architecture reserves both shallow and deep embedding
information.

2.2.2.3 GAN Methods

Generative adversarial networks (GANs) are used in unsupervised tasks. A GAN
consists of a generator G and a discriminator D. The discriminator D distinguishes
between samples generated from the generator and samples from the training
dataset. The generator G generates a mapping of input samples that cannot be
distinguished by the discriminator D. In the conditional GAN (cGAN) [19],
ordinary GAN is extended to a conditional model by conditioning both the generator
and discriminator with some extra information, which could be any kind of auxiliary
information, such as class labels or data from other modalities [19].
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Fig. 2.3 A basic NAS framework

2.2.2.4 NAS Methods

A recent study in routability prediction explores the automated development of
estimator structures with very little designer expertise or human effort. It utilizes
the popular neural architecture search (NAS) technique [21]. NAS automatically
conducts architecture engineering to find effective neural network models for
specific tasks without (or with minimum) human interventions. It has demonstrated
great potential in applications like image classification, object detection, and
semantic segmentation. Figure 2.3 shows a basic NAS framework. It consists of
three key ingredients: search space, evaluation strategy, and search strategy. The
search space defines a family of candidate architectures that can be explored in
NAS. The evaluation strategy determines the metric to estimate the design quality
(e.g., accuracy) of a candidate architecture and provides feedback to the search
process. The search strategy is the method to explore the search space and guide
the search process toward the choice of a promising ML model.

2.2.3 Why DL for Routability

Data-driven routability estimators are initially constructed with traditional ML mod-
els, including support vector machine (SVM)-based estimator [4, 5], multivariate
adaptive regression spline (MARS)-based estimator [4, 31], and artificial neural
network (ANN)-based estimator [25, 26]. These ML models typically only process
a limited number of input features. For fine-grained routability prediction on DRV
locations, traditional ML methods are applied to make decisions based on a small
cropped region with limited features from the layout. Such a small input region
strongly limits the receptive field (the field visible to the model) of these traditional
ML methods. As a result, they cannot capture the global information from a larger
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Macros DRC hotspot

Fig. 2.4 Macros and DRC hotspot distribution. Orange circles indicate regions with high DRVs

region of the layout. For example, the nets spanning a large region have a large
impact on the routability. Another important global impact is the tendency for DRV
hotspots to aggregate in the space between adjacent macros. This is illustrated
in Fig.2.4. A cropped region is usually too small to capture the impact from
neighboring macros. In addition, routability can also be affected by clock wires
and power grids, which may also be captured by a large receptive field.

DL models are naturally good fits to capture the global information from large
regions. In computer vision, various CNN/FCN models have been designed to
identify the objects or semantic of images by capturing the pattern of a whole
image. Many routability estimators [6, 7, 11, 12, 15, 18, 20, 27, 29] utilize these DL
techniques to process placement or routing solutions like images. Also, DL models
have strong abilities to process the interactions among different features/channels,
like the RGB colors in different channels. For routability prediction, researchers can
extract many relevant features for routability based on their own intuitions and then
feed these features into DL models as different channels.

Notice that it is actually not necessary for DL-based models to take the whole
layout as input. If developers choose to take cropped regions as input, DL models
can still support a much larger cropped region as input compared with traditional
ML models.

Here, we provide a simple case study on fine-grained DRV location predic-
tion, assuming F different features are defined for each method. The whole
layout is tessellated into w x h grids. More details of such setup will be
introduced in the next section on methodologies.

* For traditional ML-based methods [31] without neighboring information,
to make predictions on each 1 x 1 grid, the F features are measured only

(continued)
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on this grid; thus, the model input is a vector with length F. The receptive
fieldis 1 x 1 grids.

* For traditional ML-based method [5] with both small (1 x 1 grid) and large
(3 x 3 grids) measurement windows, there are F' features collected with the
small window and another F features with the large window. The model
input will be a vector with length 2 F. The receptive field is 3 x 3 grids.

* For traditional ML-based method [25] with features on neighboring grids
calculated separately, for a cropped region with 3 x 3 grids, the model input
is a vector with length 9F. The receptive field is 3 x 3 grids.

* For DL-based methods applied on the whole layout, the raw input is in the
shape of w x h x F. Their receptive fields are equal to or smaller than
w X h grids and can be calculated [2] based on actual model structures.

This case study verifies our previous claim that DL-based estimators can
process more inputs and support a much larger receptive field.

2.3 DL for Routability Prediction Methodologies

We will introduce the general flow for routability prediction with DL methods in
this section. It includes four major steps: data generation and augmentation, feature
engineering, DL model architecture design, and model training and inference. The
prediction flow itself can be stand-alone, without being part of placement or routing
algorithms. The majority of previous routability prediction methods are applied after
the floorplanning stage, including post-global placement, post-detailed placement,
and post-global routing. When applied at later stages, more layout design decisions
have been made; thus, more features are available and the prediction can be more
accurate. As a trade-off, there is less room for DRV mitigation at later stages. Before
floorplanning, in contrast, no layout information is available, and the design has to
be processed as a graph with graph neural network (GNN) based on the gate-level
netlist, instead of an image. Very few works [14] target such pre-layout stage due
to the difficulty. Except for this rare case, the general flow for routability prediction
based on layouts is introduced step-by-step in this section.

2.3.1 Data Preparation and Augmentation

The model construction process starts with data generation. Designers collect
representative circuit designs and then go through the physical design process with
EDA tools to generate training data. In this process, relevant raw data is dumped out
for feature and label extraction and preprocessing.
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Before starting the data generation process, designers need to decide whether the
model targets cross-design, according to their application scenario. A cross-design
ML estimator means the estimator directly applies to new designs that are not in
the training set. Usually, researchers require the new design to be different from
training designs at the netlist level. Thus, the following examples are not viewed
as cross-design: (1) models trained and tested with different layout implementation
of the same netlist and (2) models trained and tested on multiple designs, which
appear in both training and testing sets. Most representative routability estimators
are cross-design, which means they do not need model retraining or fine-tuning
for new designs. In this case, the only prediction cost is the short model inference
time, which is the main advantage of performing predictions with ML models.
However, it is more challenging for cross-design models to achieve high accuracy
on all new designs never seen by the model, especially for new designs that
are largely different from the training data. Notice that, although cross-designs
support training and testing on different designs, almost all estimators require
the same technology library used for training and testing designs. For different
technology nodes, the complex correlation between features and routability can be
quite different, preventing the model from learning a more generalizable pattern.

To construct a typical cross-design ML model, designers start with collecting rep-
resentative circuit designs and constructing a training dataset based on them. Many
prior works perform their experiments on different private industrial benchmarks.
This makes the direct comparison among different solutions very difficult. One
popular public benchmark is from the ISPD’15 detailed-routing-driven placement
contest [3]. Based on these circuit designs, the physical design process can be
finished with commercial layout tools, which are viewed as the source of ground
truth. All raw data related to features and labels are collected and dumped out at
corresponding design stages.

To construct high-performance DL-based estimators, a sufficient amount of
training data is necessary. Take those widely used datasets in computer vision as
an example, CIFAR-10 and MNIST contain 50 thousand and 60 thousand training
images, respectively. The larger-scale dataset ImageNet contains more than 14
million images. In comparison, it is challenging to generate as much training data in
routability prediction. The challenge from limited data is twofold. First, it is difficult
to collect a large number of different circuit designs for training data generation,
especially for researchers in academia. Second, even if many circuit designs can be
collected, generating a large amount of labeled data can be highly time-consuming.
The generation of each label requires going through the standard physical design
flow once. As a result, routability estimators are usually trained with a limited
amount of training data. Currently, there is no consensus on the minimum amount of
data to use for training, considering the largely different scenarios in different works.
But as a rule of thumb, it is recommended that at least hundreds of layouts from
several different designs should be generated for training cross-design estimators.

Although we face challenges from limited training data, there are several
operations that can enlarge the size of the training dataset. For the same circuit
design, multiple netlists may be generated by providing different parameters to
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the logic synthesis tool. Similarly, for the same netlist, multiple layouts can be
generated. For designs with macros, changing the locations of macros can very
efficiently generate many essentially different layout solutions. In addition, based
on the same layout solution, researchers can perform data augmentation on-the-fly
during training, which is well supported by current deep learning techniques. This
on-the-fly augmentation avoids enlarging the storage requirement of the training
dataset. The most common augmentation techniques for routability problem include
horizontal flipping, vertical flipping, and rotation by 180°. Some researchers suggest
more aggressive augmentation techniques like rotation by 90°, 270°, random crop-
ping and padding, random cropping and scaling, etc. However, these augmentation
techniques tend to create representations of unrealistic layouts and thus are not very
reasonable in this routability prediction problem and should be used very carefully.

Based on the generated raw data, input features X and labels Y are generated in
the subsequent data preprocessing stage. Just like the basic routing model in EDA
tools, for routability prediction, the whole layout is firstly tessellated into a two-
dimensional matrix of equal-sized grids/tiles, with w grids in the width and A grids
in the height. A visualization of the label extraction process is shown in Fig.2.5.
Notice that this step is not directly related to the gcell or the routing algorithm, and
it is up to the designers to decide the grid size in tessellation. There is a trade-off
between the granularity and the computation cost. A finer-grained tessellation with
a smaller grid size allows more detailed identification of DRV hotspot locations,
but at the expense of a higher computation cost during preprocessing, training, and
inference.

After the layout tessellation, each feature or the label of the layout is extracted
as a two-dimensional density distribution map. Details of extracted features will be
introduced in the next subsection. To calculate this, for each grid on the tessellated
layout, we measure the feature value in this grid as a real number. Then, each feature
of the whole layout with w x /& grids is in R¥*”. Assuming altogether there are
F different input features, they can be calculated independently and then stacked
together as one input tensor X € R¥*"*F_ Similarly, for the label collection,
assuming we are performing DRV hotspot detection, the label can be extracted in
the same way and denoted as ¥ € R**", Sometimes designers are only interested
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Fig. 2.5 Visualization on the feature and label extraction. (a) The layout with DRC violation
distributions as labels. (b) The tessellation of the layout with w x & grids. (¢) The label on DRC
violation distribution extracted as ¥ € R**" for regression (right) or Y’ € {0, 13wk for binary
classification (left)
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in whether there is any violation at each grid, so this task degrades to a binary
classification problem for each grid, and the label is Y’ € {0, 1}**". This process
is also shown in Fig.2.5. For DRV count prediction, the label is summation of all
numbers of violations, y = sum(Y) = Z]“le Zf‘zl Y[il[j1 € R.

2.3.2 Feature Engineering

Feature engineering plays a key role in DL for routability prediction methodologies
since it determines the upper limit of the performance of ML methods. If certain key
information is missing in input features, it is almost impossible for the ML model
to learn the corresponding correlation and make accurate predictions. Notice that
available features depend on the stage we apply the model. For example, if the model
targets to be applied before placement, then only macro locations can be included as
features, while cell locations are unknown yet. Figure 2.6 shows the basic physical
design flow with available features and labels at each design stage. The selection
of features heavily relies on designers’ expertise in both physical design and deep
learning, and the solution is specific to this routability prediction problem. After
years of exploration, there are multiple fundamental features that are recognized by
most EDA researchers and engineers. They can be roughly categorized into several
types. We introduce these features in detail below.

2.3.2.1 Blockage

A routing blockage defines a region where routing is not allowed on specific layers.
This is often considered as a hard constraint and directly affects the final design
routability. A higher density of blockages naturally leads to poor layout routability.
The blockage information includes locations of macros, cells, and pins on the layout.
To extract more information for the ML engine, different types of blockages can be
captured separately into different two-dimensional density distribution maps. Below
are some of the most commonly adopted blockage-related features:

The physical design (layout) flow
Floorplannin Global Detailed Clock Tree Global Detailed
- B T Placement (GP T Placement (DP] T Synthesis T Routing (GR T Routing (DR T

Macros Cells Cells Cells GR DRC
congestion violations

Pins Pins Pins

Estimated
Wires Wires Wires

Available features/labels

Fig. 2.6 A basic physical design flow with available features and labels at each design stage
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* Macro density. After floorplanning, the locations of all macros are fixed. The
regions occupied by macros are included in features.

¢ Cell density. Cell locations are mostly fixed after detailed placement. The density
distribution of cells is included in features.

* Pin density. Besides macros and cells as blockages, the density distribution of all
pins from both macros and cells is included in features.

Besides these widely adopted features, other features that may be useful include:

* Decomposed cell density. In some works, to capture more information, the cell
density of different types of cells is extracted separately as different features. For
example, densities of flip-flop cells, clock tree cells, and fixed cells that cannot
be moved can be additional features besides the density of all cells.

e Decomposed pin density. Similar to cell density, pin density can also be
decomposed into multiple features, including macro pins at each metal layer,
the pins of flip-flop cells, and the pins of cells on the clock tree.

* Horizontal/vertical track capacity maps. As mentioned in the background, rout-
ing congestion depends on the gap between the demand of routing tracks and the
supply. As a result, the density map of routing track supply can also be a useful
input feature. Track capacity is measured separately in two directions: horizontal
and vertical. Thus, we have separate features for the two directions.

* Detailed pin configurations. As mentioned, pin accessibility problems can cause
DRC violations. In some works [15] targeting advanced technology nodes,
the detailed pin patterns/configurations are captured specifically with “high-
resolution” as input features.

2.3.2.2 Wire Density

In each region, a higher wire density will lead to higher demand on routing tracks
and thus higher routing track overflow, more routing congestions, and likely more
DRC violations. To capture this effect, wire density information is an essential input
to routability estimators. Compared with blockage information, which is directly
available after locations of components are fixed by placement, the wire distribution
on a layout cannot be known explicitly until routing finishes, when it is too late
to perform routability prediction. As a result, the extraction of wire density itself
requires some estimations, and various solutions have been proposed. Below are
some commonly adopted wire density-related input features. The most widely used
feature is RUDY. Figure 2.7 shows visualizations of multiple features.

¢ RUDY. Rectangular uniform wire density (RUDY) [24] is derived by the total
uniform wire density spreading in the bounding box of a net. The wirelength
of each net is estimated by the half-perimeter wirelength (HPWL) of the net
bounding box. A higher RUDY indicates a higher wire density. At each location
(x, y) on the layout, the RUDY contributed by the ith net is:
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(b)

Fig. 2.7 Visualization of some common extracted features. (a) Pin density. (b) Macro density. (c)
Long-range RUDY. (d) RUDY pins. (e) Detailed pin configurations in high resolution (from part
of the layout)

HPWL(i)/area(i) if (x, y) is in the bounding box of ith net

RUDY' (x, y) =
Otherwise

where area(i) is the bounding box area of the ith net. The final RUDY at location

(x, y) is the summation of contributions from all nets in the design.

RUDY (x, y) = Z RUDY' (x, y)

1

RUDY is originally proposed as a pre-routing congestion estimator [24] and is
first adopted as an input feature in the work of [27].

* Short/long-range RUDY map. The original RUDY feature can be decomposed
into long-range and short-range RUDY. Long-range RUDY is from nets covering
a distance longer than a threshold. Similarly, short-range RUDY is for nets
shorter than this threshold. According to the work of [27], there is a stronger
correlation between long-range RUDY and DRV than short-range ones.

* Horizontal/vertical net density map. Similar to long-range RUDY, these two fea-
tures estimate how many nets are expected to go through each grid horizontally
and vertically [7]. The probability of the grid being routed through by a net will
be evenly distributed to each grid in a column or a row in the net bounding box.
Thus, in the horizontal (vertical) direction, all grids covered by the same net will
receive the same density from this net, which equals one divided by the number
of covered grids in this row (column).

* RUDY pins. It is similar to pin density, while the contribution of each pin to the
density map now equals the long-range RUDY of the net connected with it.

In addition to these methods, some works adopt a heuristic named fly line,
which is a line that connects pins. It is also referred to as flight line in some
previous works [6]. There are different types of fly lines that may reflect wire
congestions. Figure 2.8 demonstrates examples of these wire density features, and
some explanations are given below:

» Pair-wise fly lines. For each net, the pair-wise fly lines are connected from each
pin to all the other pins of the same net.
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Fig. 2.8 Wire density feature examples. (a) RUDY. (b) Bounding box. (¢) Pair-wise fly lines. (d)
Star fly lines. (e) Source-sink fly lines. (f) MST fly lines

¢ Star fly lines. For each net, the star fly line connects each pin to the center of the
pins in the net.

¢ Source-sink fly lines. In timing optimization, tools tend to connect sinks with
the source through the shortest path. To capture this effect, source-sink fly line
connects the source pin with all sink pins in the same net.

e MST fly lines. The three aforementioned fly line features tend to overestimate
the routing demand. In traditional routing, the minimum spanning tree (MST) is
an effective algorithm to guide the router. Thus, the fly line connects all the edges
in its MST.

2.3.2.3 Routing Congestion

As introduced, the routing congestion of a layout is a good, although not perfect,
indicator of routability and DRC violations. Thus, estimations on congestion are
very useful input features. Besides being a feature, it is also used as the prediction
label in many prior works. There are two types of congestion reports that can be
generated by commercial layout tools, as shown below:

 Trial routing (TR) congestion. After detailed placement, the trial global routing,
also denoted as trial routing, can be performed. It produces an estimation of
routing congestion, named TR congestion.

* Global routing (GR) congestion. Compared with trial routing, the full-fledged
global routing can generate a more detailed congestion map, denoted as GR
congestion.

2.3.2.4 Pin Accessibility

Besides congestion, pin accessibility is another main cause of DRC violations,
especially at the advanced technology nodes. As a result, DRVs may correlate
with pin shapes and the proximity relationship among pins. Compared with other
input features, such fine-grained pin patterns at the advanced node are difficult



2 Deep Learning for Routability 51

to be directly quantitatively measured when using large grids, with each grid
containing multiple pins. To solve this, one option is to use high-resolution “images”
showing the pin patterns/configurations as input features [15]. However, such a high
resolution may lead to a higher computation cost in the routability estimator.

2.3.2.5 Routability Label

Besides all features mentioned above, we also discuss different types of labels used
in routability prediction in this subsection.

¢ All DRC violations. Most prior works directly predict all DRC violations in the
layout. Some works use accurate DRC violations from sign-off validation EDA
tools, while others adopt fast DRV estimations from digital layout tools after
detailed routing finishes.

¢ Part of DRC violations. Some prior works choose to only predict certain types
of DRC violations (like low metal layer short violations) in order to improve the
layout flow for better routability.

¢ Routing congestion. Considering the complexity and difficulty in DRV pre-
diction, many works choose to only predict the routing congestion for better
accuracy, especially for models targeting to be applied at earlier design stages.

2.3.3 DL Model Architecture Design

As mentioned, the most widely used DL models for routability prediction are CNN-
and FCN-based methods, targeting coarse-grained and fine-grained routability
prediction tasks, respectively. We use the term “FCN based” broadly to include all
DL models with both downsampling and upsampling structures. In this part, we
will introduce the model architecture design. It starts with the common operators
and connections, which are the basic building blocks of estimators. After that, we
introduce representative prior works as case studies to demonstrate the design of
different routability estimators.

2.3.3.1 Common Operators and Connections

We start with the detailed introduction of operators used in CNN/FCN methods
for routability prediction. The fundamental operators include convolutional layers,
pooling layers, and fully connected (FC) layers. CNN performs downsampling
before the FC layers in order to enlarge its input receptive field and capture
global information of the whole circuit layout. The downsampling in CNN-based
routability estimators is usually achieved by either a maximum pooling layer or
a convolutional layer with stride equal to 2. The stride is a parameter of the
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Fig. 2.9 The input regions of atrous or dilated convolution with rate » = 1, 2, 3 for a 3 x 3 kernel

Fig. 2.10 Visualization of
sub-pixel upsampling (Sub)

operation. It is adopted in the
routability estimator »
PROS [7]

neural network’s filter that modifies the amount of movement over the input.
Many researchers prefer the latter option for downsampling since it allows one
more convolutional operation. After the downsampling, the output is flattened
and processed by multiple FC layers, which generate one vector or scalar as the
prediction. To evaluate the overall routability, CNN-based estimators perform binary
classification or regression.

In addition to the standard convolutional layer, the atrous convolution, also
known as dilated convolution, is constructed by inserting zeros between each value
in the kernel. An atrous convolution with dilation rate » would insert r — 1 zeros
between adjacent values in the kernel. A visualization of atrous is shown in Fig. 2.9.
When rate r = 1, it degrades to a regular convolution operator. This operator is
designed to further increase the receptive field at the cost of higher memory usage.
It is commonly seen in image segmentations and starts to be adopted for routability
prediction in recent years [7].

Compared with CNN, FCN performs both downsampling and upsampling, or
named encoding and decoding, in order to achieve a two-dimensional output as the
fine-grained prediction on DRC violation distribution. The downsampling process
is performed with the front half of the FCN structure, which is usually very similar
to the CNN model with convolutional and pooling layers. After downsampling,
the upsampling is commonly performed with transposed-convolutional layers in
the latter half of the FCN structure. In addition to transposed convolution, the
other common choice of upsampling is the sub-pixel upsampling block (Sub). It
rearranges the elements of W x H x r2C tensor to form a rW x rH x C tensor
with pixel shuffling. Figure 2.10 provides a simple example, where W = 2, H =
2,r = 2,C = 1, converting a tensor in 2 X 2 x 4 to a tensor in 4 x 4 x 1. This
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operation adds no extra trainable parameters and takes less computation cost. Notice
that standard convolutions are also applied during the upsampling process, and the
width and height of the final output are commonly designed to be the same as the
input.

These widely adopted operations need to be connected to build the routability
estimator. Besides the standard connections between every two neighboring lay-
ers, the shortcut or skip connection is commonly adopted in CNN-/FCN-based
routability estimators. Such shortcuts can be roughly categorized into short-range
and long-range shortcuts. The short-range shortcut can be achieved with structures
like the residual block (resBlock) in ResNet [10]. It adds the input value of this
residual block to the output. The addition is element-wise and thus requires exactly
the same dimension between the two ends of the shortcut. The size of a residual
block typically contains only two convolution layers, limiting the range of such
shortcut. The long-range shortcut can be based on structures like U-Net. It applies
to FCN-based estimators, which concatenate or add feature maps in the front
(before downsampling and upsampling) directly to feature maps near the end (after
downsampling and upsampling). In this way, it supports a combination of both
shallow and deep feature maps, and the successive layers can learn from the feature
mixture. If it performs feature map concatenation instead of addition, it only requires
the same width and height between the two ends of shortcut, without limiting the
dimension in channels.

These are the basic building blocks of routability estimators; then, we introduce
representative prior works as case studies below. The visualizations of these
estimator structures are shown in Fig. 2.11.

(o)
e 5

(a) )

Conv + Pool
Concat

Conv + Pool Conv + Trans

Conv + Trans

Concat

(c) (d)

Fig. 2.11 Model structures for fine-grained DRC hotspot location detection as case studies. (a)
RouteNet [27] structure. (b) PROS [7] structure. DC stands for dilated convolution, RB stands
for refinement block, and Sub stands for sub-pixel upsampling block. (¢) J-Net [15] structure. (d)
Painting [29] generative framework structure



54 Z. Xie et al.

2.3.3.2 Case Study: RouteNet [27]

The work RouteNet [27] proposed two different models, one for the overall
routability prediction and the other to pinpoint the DRC hotspots. A CNN-based
model is adopted to predict the overall routability in RouteNet. It directly adopts the
18-layer ResNet but replaces the output layer to produce a single-scalar prediction,
indicating four different levels of routability. In addition, this 18-layer ResNet is
already pretrained on the ImageNet. Thus, the training process can be viewed as
transfer learning with data about routability. This model is applied after global
placement.

In comparison, to pinpoint the DRC hotspots, RouteNet proposes an FCN-based
model with six convolutional layers, two pooling layers, two trans-convolutional
layers, and one long-range shortcut structure. According to its ablation study, using
fewer convolutions, removing the shortcut, or removing pooling/trans-convolution
will all lead to accuracy degradation. This model is applied after global routing.

2.3.3.3 Case Study: PROS [7]

The work of PROS [7] proposed a more complex FCN-based model to pinpoint GR
congestion locations before routing. Compared with DRC hotspot detection, this
is also a fine-grained prediction task but easier to obtain a higher accuracy. In the
downsampling (encoding) part of its model, similar to RouteNet [27], it directly
adopts a whole pretrained ResNet network and then performs transfer learning. To
avoid too much reduction in feature map size while maintaining the receptive field,
some standard convolutions with stride 1 or 2 are replaced by dilated convolution
(DC) with stride set to 1 and rate set to 2 or 4.

In the upsampling (decoding) part of its model, it adopts the sub-pixel upsam-
pling blocks (Sub) to upsample and recover the fine-grained predictions. In addition,
it introduces refinement blocks (RB), which are quite similar to residual blocks in
ResNet, to perform convolutions on the feature maps.

2.3.3.4 Case Study: J-Net [15]

The work of J-Net [15] proposed an FCN-based model to pinpoint DRC hotspots
before routing. Compared with previous works, it is targeted to the advanced sub-
10nm process nodes, where pin accessibility becomes a major contributor to DRC
violations. The main model structure is also FCN based with three long-range
shortcuts. To deal with the pin accessibility problem, it adopts “high-resolution”
pin configuration images as extra inputs and designs extra downsampling structures
to extract pin accessibility information from these pin configuration inputs.
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2.3.3.5 Case Study: Painting [29]

The work of Painting [29] adopted a training framework based on cGAN for
routability prediction on FPGA. The generative network structure is an FCN-
based model with five long-range shortcuts. This FCN-based model also generates
predictions on routing congestion locations. But instead of directly optimizing this
FCN-based generative network like the prior works, it is trained under the cGAN
framework together with a CNN-based discriminator network. The generative
network is trained to produce predictions similar to labels such that it confuses
the discriminator network. Currently, the difference in performance between this
cGAN-based training method and common FCN-based methods still remains rather
unclear. For routability predictions on FPGA, we also observe some research
efforts [1] adopting such cGAN-based framework and training methods.

2.3.3.6 Case Study: Automated Model Development [6]

Most aforementioned routability models are very carefully designed and achieve
good results on their own benchmarks. However, these very well-designed methods
usually take a long development time and high engineering efforts. A recent work
proposes to avoid this cost by automating the model development step by neural
architecture search (NAS) methods [6]. It supports a large search space allowing
various types of operations and highly flexible connections. Candidate operations
include standard convolutions, atrous convolutions, and mixed depth-wise convolu-
tions. In the search space, a model is represented by a graph. Specifically, vertices
represent operations, and edges indicate the directed connections of operations. Its
search space is shown in Fig.2.12. As for the search strategy, it samples edges
from multiple completely ordered graphs with adjustable probabilities defined on
each component of the graph. After each sampling, the sampled model is trained
and evaluated on the validation set. Then, the evaluation result is used to update
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Fig. 2.12 The graph-based search space for routability estimators, in the work of [6]
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the sampling probability. The basic idea is if the performance is good, then the
probability of corresponding structures being sampled again becomes higher.

Compared with human-developed routability estimators, the automated-
developed estimators construct much more parallel branches and flexible
interactions. This inherits from the topology of the graph-based search space.
Also, the framework supports many different convolutional operators, increasing
the diversity of feature representations. When comparing generated models between
the coarse-grained and fine-grained predictions, the generated model for the fine-
grained DRC hotspot detection is significantly more complex [6]. It indicates
that the essential difference between these two routability prediction tasks is
captured and reflected by the two discovered models. In summary, automated
model development relieves developers from the long model development cycle and
may become the trend of designing routability estimators in the future. However,
notice that this method only automates the model development step, while the data
generation and feature engineering still rely on human engineers. We believe there
is still a long way toward fully automated routability estimator development.

2.3.4 DL Model Training and Inference

After the feature and label collection and preprocessing finishes and the model
architecture is determined, the DL model training and testing is a relative simple
task. In the training process, regularization like L2 norm is commonly adopted
to avoid overfitting. The batch normalization should be applied. For optimizers,
the common choices are stochastic gradient descent (SGD) and Adam [13]. Some
researchers tend to believe parameter tuning with Adam optimizer is easier. The
hyperparameters such as learning rate and regularization strength are adjusted
according to the model and the training dataset.

The training and inference are usually accelerated by one GPU card. The training
process usually finishes in one day, and the inference of one layout usually only
takes seconds. But notice that the feature extraction overhead for each testing layout
may take much longer time than the model inference time itself. Such feature
extraction overhead may be reduced if the model is well integrated into a physical
design tool. During training, for a large FCN model with a large input size, the
memory size of GPU may limit the maximum batch size, which affects batch
normalization quality and the model accuracy. This memory limit may require
multi-GPU training or adopting the cropping of layouts as the input.

2.4 DL for Routability Deployment

Besides the prediction of design routability, another equally important topic is how
to apply these developed estimators in real design flows to actually benefit design
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routability, which is designers’ ultimate goal. However, this topic is less explored,
and researchers haven’t reached a consensus on a unified best solution to deploy
routability estimators. In the following, we will introduce some representative
research explorations on this topic.

2.4.1 Direct Feedback to Engineers

The most straightforward way to apply routability estimators is to directly provide
feedback to human engineers. After finishing the placement of a design, engineers
can apply the model to predict the routing congestion or the DRC violation that will
emerge after the routing stage. Based on this prediction, engineers can select more
routable layout solutions or proactively improve the layout solution to achieve better
routability.

2.4.2 Macro Location Optimization

In the macro placement process, there is no effective cost metric to accurately
evaluate the output layout quality at this early stage, since its final performance
depends on the subsequent highly complex cell placement and routing stages. The
oversimplified early estimations on the HPWL and area cannot precisely reflect the
layout qualities after routing. Therefore, DL-based routability estimators are good
fit to improve the quality of macro placement. The work of [11] integrates the DL
model into the simulated annealing (SA)-based macro placement algorithm. After
deriving a placement result from perturbation of SA, it utilizes the DL model to
predict the number of design rule violations to see whether this solution will be
accepted or not. With the integration of a DL model, it achieves solutions with fewer
DRVs.

2.4.3 White Space-Driven Model-Guided Detailed Placement

Routability estimators can be applied to mitigate DRC violations proactively in
the placement flow. This is achieved by spreading the white space of the regions
with potential DRC hotspots [5]. After predicting the DRV hotspot locations, the
mitigation method collects the white space in local regions around those estimated
hotspots. Then, it redistributes white space among overlapped local windows
and keeps incrementally moving cells to redistribute white space. After this re-
legalization method, the output layout achieves fewer DRVs after routing.
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2.4.4 Pin Accessibility-Driven Model-Guided Detailed
Placement

Based on a pin accessibility-focused routability estimator, a model-guided detailed
placement algorithm [30] can guide the detailed placer to avoid generating DRV-
prone pin patterns. First, the estimator is used to generate a set of cell spacing
rules, which applies to any designs using the same cell library. The rules define the
minimum spacing between every pair of cells. These spacing rules are integrated
into a detailed placer for optimization, minimizing the total amount of inserted
placement blockages in a cell row considering cell orientations [30]. With the pre-
inserted placement blockages, all pin patterns with predicted bad pin accessibility
will be removed in the following legalization step. In this way, this model-guided
detailed placement can effectively reduce pin accessibility-induced DRVs in the
subsequent routing step.

2.4.5 |Integration in Routing Flow

Besides improving the placement step, another perspective is to use routability
estimators to facilitate global routing [7]. In global routing, based on congestion
predictions, the routing cost of gcell congestion can be modified. For the gcells
that are predicted congested, the router can shrink the available tracks so that the
router will reduce the number of wires passing through these potential congestion
areas. Also, the router can increase the wire/via cost of these congestion gcells when
routing nets spanning large regions. Nets spanning large regions can find a way to
detour and avoid potentially congested regions. With the help of a DL model, the
router can reduce DRV count and routing congestions.

2.4.6 Explicit Routability Optimization During Global
Placement

Some recent works [16] choose to explicitly optimize routability by directly
integrating the routing congestion prediction into the global placement objective
function as a new penalty term. In this way, the placer can utilize gradients to
adjust all movable cells toward better routability during the optimization of such
placement objective function. This may be the most direct and explicit way to
optimize placement solutions with respect to a given routability estimator.
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2.4.7 Visualization of Routing Utilization

In addition to most applications on optimizing layout solutions, some works [29]
apply routability estimators in visualization. They visualize the routing utilization
on-the-fly during FPGA placement and generate such real-time forecast results in
GIFs or videos.

2.4.8 Optimization with Reinforcement Learning (RL)

Last, besides the deployment of DL-based routability estimators, the work of [22]
indicates that the order of nets to be routed can significantly impact the routing
quality. It proposes an RL-based algorithm to learn the ordering policy that
minimizes the DRC violations from the net features.

2.5 Summary

In this chapter, we introduce deep learning-based methods for routability estima-
tions. After introducing background on both routability and relevant deep learning
algorithms, we emphasize the importance of global information and model receptive
field, which motivates the adoption of DL models for routability predictions.
After that, we introduce the methodology in detail, covering topics including data
preparation and augmentation, feature engineering, model architecture design, and
model training and inference. Finally, we introduce existing explorations in the
application and deployment of these routability estimators in the physical design
flow.

Although there have been many existing research efforts showing promising
results in this direction, we believe DL-based routability estimations still face
several challenges. First, the accuracy of DL estimators may degrade when applied
to certain new designs, making them unreliable in practice. In addition, it is usually
challenging to get access to adequate training data with sufficient diversity in
VLSI design, which limits the development of high-quality and generalized DL
estimators. In addition, the model size of recent DL estimators keeps increasing.
While it may not be a problem as a stand-alone tool, this may prevent an
efficient integration of the DL model into existing chip design flows. Considering
these challenges, we believe DL-based routability estimators should target higher
accuracy, better generalization, less inference cost, and improved interoperability in
design flow in the future.
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